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Abstract

This paper introduces a new algorithm, the Recursive Upwind Gauss Seidel method, and applies it to
solve a standard stochastic growth model in which the technology shocks exhibit heteroskedasticity.
This method exploits the fact that the equations de�ning equilibrium can be viewed as a set of
algebraic equations in the neighborhood of the steady-state. In a non-stochastic setting, the algorithm,
in essence, continually extends a local solution to a globally accurate solution. When stochastic
elements are introduced, it then uses a recursive scheme in order to determine the global solution.
This method is compared to projection, perturbation, and linearization approaches and is shown to
be fast and globally accurate. We also demonstrate that linearization methods perform poorly in
an environment of heteroskedasticity even though the unconditional variance of technology shocks is
relatively small and similar to that typically used in RBC analysis.
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1 Introduction

Modern quantitative macroeconomics necessarily involves the use of numerical methods in

order to compute the equilibrium behavior of a model economy. As initially introduced

by Magill (1977) and later used by Kydland and Prescott (1982) in their seminal work

on business cycle models, linearization methods have been the preferred solution approach.

Such methods are easy to implement and, as shown by Christiano (1990), do not introduce

signi�cant approximation errors for many settings studied by macroeconomists.

But, as discussed in Judd (2002), linearization methods are not trouble free. Quoting

from that paper: �For example, Tesar (1995) uses the Kydland-Prescott method and found

an example where completing asset markets will make agents worse o¤. This result vio-

lates general equilibrium theory and can only be attributed to the numerical method used.�

(p.2) More recently, Kim and Kim (2003) have shown that this error in welfare analysis is

symptomatic of linearized models and argue in favor of second-order approximation meth-

ods; variations on this theme have been developed by Sims (2000), Schmitt-Grohe and Uribe

(2004) and Aruoba et al. (2006).

In order to study more complicated settings, non-linear methods have also been proposed

that employ either projection techniques (Judd (1992), McGrattan (1999) and Christiano and

Fisher (2000)) or perturbation techniques (Judd and Guu (1997)). In a recent contribution to

understanding these approaches, Aruoba et al. (2006) examine the accuracy of these methods

(along with traditional linearization and log-linearization methods) within the context of a

prototypical real business cycle model. Their results replicate Christiano�s earlier analysis

(1990) in that, for economies characterized by low risk aversion (i.e. little curvature in
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the utility function) and shocks that do not push the economy far from the steady-state

(i.e. small variance of technology shocks), linearization methods do quite well.1 However,

linearization methods, not surprisingly, deteriorate quickly in the presence of large shocks

and high risk aversion.

This paper complements and extends the analysis by Aruoba, et al. (2006) in two dimen-

sions. The �rst and major contribution of this paper is the introduction of a new algorithm

to solve stochastic dynamic economies; for our analysis we use a standard real business cycle

model (again, with the shocks following a discrete-state Markov process). Our approach

involves two parts: �rst, a one-pass continuous modi�cation of the Upwind Gauss-Seidel

(UGS) Algorithm (Judd (1998)) is used to solve for the non-stochastic problem, and, second,

an implicit iterative scheme is employed to account for the stochastic e¤ects. In the latter

iterative approach, the small numerical magnitudes of the stochastic terms (e.g. cross-state

transition probabilities in the case of discrete-state Markovian processes or variances for con-

tinuous AR processes) produces relatively fast convergence. We refer to this procedure as

the RUGS (Recursive Upwind Gauss-Seidel) method. The algorithm has two strengths: (1)

It is computationally fast; and (2) It has high global (i.e. non-local) accuracy. The essence

of the RUGS approach, in contrast to other common nonlinear methods, is that it contin-

ually extends a local linear solution (in the neighborhood of the steady-state) to a globally

accurate one over an arbitrary interval. This is an improvement over perturbation methods

which aim to increase the accuracy of a local solution; at the same time, the RUGS method

is more tractable than other globally accurate approximations such as projection methods.2

1 Log linearization, however, performs the worst.
2 We are grateful to an anonymous referee for providing this characterization of the RUGS approach.
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We test the performance and accuracy of our algorithm in comparison with other popular

nonlinear methods using the analysis by Aruoba et al.(2006) as a template.

In particular, we consider the following methods as comparison tests for our algorithm:3

1. A modi�cation of the Value Function Iteration Algorithm (VFI) as it is implemented

in Danthine et al. (1989), which is used here mostly to produce a standard time unit

for other more advanced methods.

2. A perturbation method based on the Taylor expansion near the deterministic equilib-

rium point as described in Judd and Jin (2002).

3. A projection method using Chebyshev Polynomials spectral expansion of the sought

policy functions. The projection of the residual is performed by the collocation proce-

dure.

4. Standard linearization and log-linearization approximation methods.

The second contribution of the paper is that we examine discrete state settings so that

heteroskedasticity in the technology shock can be introduced. In particular, we examine

a crash state scenario and demonstrate that linearization methods perform poorly in this

environment. We show that, even though the magnitude of the unconditional variance of

the technology shock would lead one to conjecture reasonably small approximation errors (as

suggested by Christiano (1999) and Aruoba et al. (2006)) for linear methods, the volatility

of the conditional variances undermines this conjecture. Recent papers by Barro (2006) and

3 We exclude from the benchmark set the Finite Element Method also considered in Aruoba et al., (2006)
because, as shown there, in the case of smooth policy functions, it does not do better than the spectral
expansion with Chebyshev Polynomials. Another interesting non-local method we don�t test here is the Pade
approximation considered in Judd and Guu (1997) for a simple deterministic capital growth problem.
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Bloom (forthcoming) have argued forcefully for the presence of large shocks to uncertainty

in the economy and, hence, our analysis motivates the use of more sophisticated solution

methods in such settings.

Our results can be summarized follows. First, as in Aruoba et al. (2006), the local

methods such as the linear approximation and the perturbation method perform poorly in

the cases where non-local properties of the solution are essential. Compared to RUGS, the

Perturbation method (5th order polynomial) is slower and less globally accurate (in terms

of the Euler Equation Errors) even for simple two-state (i.e. homoskedastic) economies

characterized by low risk aversion. Second, the RUGS method and the Projection method

both produce globally precise solutions, but RUGS is faster in higher dimensional settings.

In particular, as described below, an advantage of the RUGS method is that computational

time increases linearly with the number of exogenous states.4

2 The Benchmark Problem

The benchmark problem for the algorithm is a discrete-state version of the familiar real

business cycle model characterized by the following social planner problem:

max
ct;nt

E0

" 1X
t=0

�tu (ct; 1� nt)
#

(1)

subject to ct = �tf (kt; nt) + (1� 
) kt � kt+1

4 This becomes relevant when computing the implied distribution for capital in discrete state models. The
histogram for this distribution will be bi-modal in a two-state model. If one wants to replicate a single-peaked
distribution, then at least nine states (for the technology shock) were required. Solving this using a Projection
method becomes quite time consuming.
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where ct; nt; kt; and �t denote individual consumption, labor hours, beginning-of-period cap-

ital stock and the technology shock, respectively; the functions u (�) and f (�) are the one-

period utility and production functions; the constants � and 
 represent respectively agents�

discount factor and the depreciation rate of capital. As in Danthine, Donaldson & Mehra

(1989), the technology shock, �t, takes on the discrete set of values � = (�1; �2; :::; �s) and

follows a Markov process with the transition probability matrix P .

To apply our numerical algorithm, �rst rewrite eq. (1) as a Bellman Equation. The

value function V (k; �) is de�ned by (with consumption eliminated via the (always binding)

resource constraint):

V (k; �) = max
k0;n

24U �k; k0; n; ��+ � X
�
02�

P
��

0V
�
k0; �

0
�35 (2)

with

U
�
k; k0; n; �

�
= u

�
�f (k; n) + (1� 
) k � k0; 1� n

�
: (3)

The associated necessary conditions are (with Ui denoting the partial derivative with respect

to the ith argument):

U2
�
k; k0; n; �

�
+ �

X
�
02�

P
��

0V1

�
k0; �

0
�
= 0 (4)

U3
�
k; k0; n; �

�
= 0 (5)

V1
�
k0; �

�
= U1

�
k; k0; n; �

�
(6)

Note that the set of necessary conditions form a complete di¤erential-algebraic system of
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equations for the sought value function, V (k; �), and policy functions k0 = k� (k) and n =

n� (k) : Combining these we have:

U2 (k; k� (k) ; n� (k) ; �)+ (7)

�
X
�
02�

P
��

0U1

h
k� (k) ; k�0 (k� (k)) ; n�0 (k� (k)) ; �

0
i
= 0

U3 (k; k� (k) ; n� (k) ; �) = 0 (8)

3 The Algorithm

3.1 Solving the Deterministic Problem

Consider �rst the steady-state system of the economy in which � = 1; then denoting n1 (k) =

n (k), eqs. (7) and (8) become:

U2
�
k; k0 (k) ; n (k)

�
+ �U1

�
k0 (k) ; k0

�
k0 (k)

�
; n
�
k0 (k)

��
= 0 (9)

U3
�
k; k0 (k) ; n (k)

�
= 0 (10)

As is well known, the presence of the nested terms k0 (k0 (k)) ; n (k0 (k)) in the above equations

implies that, in general, the solution involves functional methods. However, certain properties

of the solution permit the treatment of eqs. (9) and (10) as algebraic so that its solution can

be found by a standard algorithm (see sections 12.4 and 12.5 in the monograph of Judd (1998)

for the description of the Upwind Gauss-Seidel (UGS) method used here and an example of

its application to a continuous-state deterministic Bellman equation). This is demonstrated
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below:

The solution of the system de�ned by eqs. (9) and (10) which maximizes the right-hand

side of the Bellman equation has the unique stationary point k0 (ks) = ks that satis�es the

equations

U2 (ks; ks; ns) + �U1 (ks; ks; ns) = 0 (11)

U3 (ks; ks; ns) = 0 (12)

In equations (11) and (12) we introduce the corresponding stationary value of labor ns =

n(ks). The stationary point can be found by applying a standard non-linear equation solution

method to the above equations.

Given this solution, the stability and uniqueness of the steady-state implies the inequal-

ities:

8k > ks : k
0 (k) < k (13)

8k < ks : k
0 (k) > k

Assume that we already have the solution to the system de�ned by the eqs. (9) and

(10) over the interval [ks; kc]. That is, over this interval, we know the functions k0 (k) =

~k (k) ;n (k) = ~n (k); and now we extend the interval to [ks; kr] where kr > kc. The �rst

inequality in eq.(13) implies that for some interval to the right of kc, i.e. kc < k < kc +

�; the value of the sought function lies to the left of kc; therefore the nested functions

k0 (k0 (k)) ; n (k0 (k)) of such k 2 [kc; kc + �] may be calculated using the known functions
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~k (k) ; ~n (k). Then, for this interval, the system of eqs. (9) and (10) takes the form:

U2
�
k; k0 (k) ; n (k)

�
+ �U1

�
k0 (k) ; ~k

�
k0 (k)

�
; ~n
�
k0 (k)

��
= 0 (14)

U3
�
k; k0 (k) ; n (k)

�
= 0

Note, critically, that this system of equations does not involve nested functions so it can be

treated as an algebraic equation and solved by an appropriate standard numerical method.

Obtaining in this way the solution over the interval [kc; kc + �], it is possible to extend

the solution interval to the right; recursive repetition of the procedure can be done until the

desired boundary, kr, is reached. Thus choosing the right point of the initial interval in�nitely

close to the stationary point, we can then step by step extend the solution to the endpoint.

Clearly, the second inequality in eq. (13) allows us to apply the same procedure to the left of

ks. This procedure generates the solution over the entire interval [kl; kr]. As stated earlier in

the Introduction, the use of the UGS method to solve for the equilibrium policy functions has

a nice intuitive characterization: In the neighborhood of the steady-state we can approximate

the solution as a pair of linear functions. Then, as the neighborhood is extended over the

entire interval, the initial linear functions are modi�ed to produce a globally accurate set of

policy functions. Summarizing the explanation above (with an addition of certain technical

details), to obtain the UGS solution at the interval [kl; kr] 3 ks, one should proceed as follows:

1. Find the steady-state point ks from the numerical solution of the algebraic equations

(11) and (12).

2. De�ne a small interval [ks � �0; ks + �0] near the steady-state point and obtain an
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approximate linear solution at that interval: k0 (k) = ks +
dk0(k)
dk

���
k=ks

(k � ks) ; n (k) =

n (ks) +
dn(k)
dk

���
k=ks

(k � ks). The accuracy of that solution is �0 . �20, so the choice of,

e.g., �0 = 10�6 yields �0 . 10�12, which is more than enough for our purposes.5

3. Solve numerically the algebraic equation (14) at the interval [ks + �0; kr]. This step

has two speci�c characteristics.

(a) The numerical method of solution should proceed sequentially along the interval

from left to right similar to a numerical method solving an initial value problem

of an ordinary di¤erential equation (ODE). So, the methods for solving an initial

value problem of a di¤erential-algebraic equation (DAE) may be of use. Here we

use the IDA method implemented in the NDSolve routine of the Mathematica

program (for those preferring Matlab, C or Fortran programming the correspond-

ing routine of the SUNDIALS package (Hindmarsh et al. (2004)) may be used as

well).

(b) The solution obtained at each step of the IDA method should be recorded as an

�external function�
�
~k (k) ; ~n (k)

�
for immediate use at the next step. Note that

the IDA method, like any other adaptive scheme solving ODE or DAE, produces

a solution at a discrete set of points with variable step given a �xed accuracy

of calculations. The solution at any point in between is usually obtained from

high-precision piecewise-polynomial interpolation. The routine performing the

5 The width �0 of the initial interval of solution (see step 2 above) limits the initial step h0 of the IDA
solver (see item 3b) from above because of the requirement k0 (ks + �0 + h0) � ks + �0, which yields the

approximate inequality h0 � �0

�
1� dk0

dk

���
k=ks

��
dk0

dk

���
k=ks

��1
, so choosing a small value for �0 may slow

down the very initial stage of calculations.
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interpolation should be used as that �external function�.6

4. Repeat step 3 for the interval [kl; ks � �0] proceeding from right to left. Combining the

solutions obtained at the steps 2, 3 and 4 produces the solution to the problem.

This algorithm allows one to solve the deterministic growth problem using a fast one-pass

algorithm. Note that the described procedure employs the proper ordering of values of the

state variable; k, and starts from the absorbing state ks; hence by the classi�cation of Judd

(1998), it can be treated as a continuous modi�cation of the Upwind Gauss-Seidel Algorithm.

Unlike the example presented in Judd (1998), where the UGS method is used to solve the

Bellman equation for the value function, we apply it here to the necessary conditions to

obtain the policy functions and thus avoid the time consuming maximization procedure.

3.2 Extending to Stochastic Settings

The procedure described above cannot be trivially generalized to the stochastic problem

de�ned by eq. (2) because

1. The stochastic problem has multiple stationary points, depending on the current value

of the technological factor.

2. The inequalities in eq.(13) may simultaneously have opposite signs for di¤erent values

of �.
6 A �xed-step method using linear approximations to the policy functions as an initial guess at each step

may substantially simplify the program if writing from scratch. Nevertheless, the trade-o¤ between ease of
implementation and desired e¤ectiveness should be taken into account. We are grateful to an anonymous
referee for this observation.
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These properties signi�cantly complicate and slow down the algorithm when extended in

a straightforward manner to the general problem. Consequently, we will use a modi�cation

of a simple iterative scheme that employs the one-pass algorithm described above. As it is

demonstrated below, this scheme converges quickly to the desired accuracy so the time of

calculation does not grow considerably.

Since the conditional probabilities in any state i sum to unity, it is the case that

�U1 [k� (k) ; k� (k� (k)) ; n� (k� (k)) ; �] = �
X
�
02�

P
��

0U1 [k� (k) ; k� (k� (k)) ; n� (k� (k)) ; �]

Adding this term to both sides of eq. (7) permits the system of equations to be expressed

as:

U2 [k; k� (k) ; n� (k) ; �] + �U1 [k� (k) ; k� (k� (k)) ; n� (k� (k)) ; �] =

�
X
�
02�

P
��

0 (U1 [k� (k) ; k� (k� (k)) ; n� (k� (k)) ; �]� (15)

U1
�
k� (k) ; k�0 (k� (k)) ; n�0 (k� (k)) ; �

0��
U3 [k; k� (k) ; n� (k) ; �] = 0 (16)

Note that the left hand side of eq. (15) is simply the deterministic case described in the

section above. Hence, we can �nd the solution to the stochastic setting by an implicit

iterative method which solves the two equations in eqs. (15) and (16). This solution is, of

course, the solution to the original problem given in eq. (2). The iterative method can be
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summarized as:

LHS
�
k
(m+1)
� ; n

(m+1)
� ; k

(m+1)
�;� ; n

(m+1)
�;� ; �

�
= RHS

�
k
(m)
� ; n

(m)
� ; k

(m)

�;�0
; n
(m)

�;�0
; �0
�

(17)

where k(m)� = k
(m)
� (k) ; k

(m)

�;�0
= k

(m)

�0

�
k
(m)
� (k)

�
represent the mth iteration of the policy

functions and LHS and RHS refer to eqs. (15) and (16). The left-hand side of system

(17) coincides with equations (9) and (10) of the deterministic case. It di¤ers from these

equations by the presence of a non-zero �external function� at the right-hand side only

and, consequently, can be solved using the one-pass method described there. Also, since

the right-hand side of eq. (15) contains the sum of addends proportional to P
��

0 with zero

diagonal terms, we expect fast convergence for this scheme since the non-diagonal elements

are typically small given the high persistence often assumed for the technology shock.

Thus the complete scheme of the numeric solution of the stochastic growth problem

consists of the following steps:

1. For each value of �i, solve the correspondent deterministic problem (de�ned by eqs.

(9) and (10)) with the one-pass UGS method in order to obtain the policy functions

k
(0)
�i
= k

(0)
�i
(k) ; n

(0)
�i
= n

(0)
�i
(k). Use them as the initial guess in the iterative algorithm.

2. Repeat the iterations de�ned by eq. (17) until the desired accuracy is reached.

Each of these steps requires an application of the one-pass algorithm described above.

In addition to the expected speed of convergence, the other advantage of this scheme is

that equations (17) are always solved separately, for each value of �, so the time of compu-

tation grows only linearly with the number of discrete states considered. The cost of this
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bene�t is the necessity to use the iterative process; also, this iterative process may diverge

under some circumstances and for some initial guesses and that may sometimes narrow the

applicability region of the method. Another advantage of our approach, as discussed in the

Appendix (Section 6.31), is that it is not necessary to discretize the capital stock explicitly.

Again, this helps to reduce the curse of dimensionality.

3.3 Convergence and Existence Proof of RUGS

A rigorous proof of convergence of the iterative process (17) would, in general, require the

use of linear operator theory in an appropriately normed functional space; unfortunately, we

will not provide that here. Instead, we present some intuitive reasoning about the properties

of convergence. A brief sketch of the derivation and the convergence criteria is presented

below, while a more detailed explanation can be found in the Appendix.

First we need to linearize equation (17) near the exact solution

k
(m)
� (k) = k� (k) + k̂

(m)
� (k) ; (18)

n
(m)
� (k) = n� (k) + n̂

(m)
� (k)

assuming that the di¤erence between the exact solution k� (k) and the approximate mth step

solution k(m)� (k) is small,
���k̂(m)� (k)

���� 1. And to analyze the convergence of the correspon-

dent linearized equations, these equations can be written in the form of

A� (k) k̂
(m)
� (k) +B� (k) k̂

(m)
� (k�) = C� (k) k̂

(m�1)
� (k) +

X
�0

D��0 (k) k̂
(m�1)
�0

(k�) ; (19)
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where A� (k) ; B� (k) ; C� (k) and D��0 (k) are certain functions of k and � (see the Appendix

for the de�nitions). The convergence estimate of the iterative equation (19) is done in the

Appendix and produces the following criteria:

max
k;�

���k̂(m)(k; �)��� � �̂ �k0mM

1� �k0m
�
1 + s�̂

� max
k;�

���k̂(m�1)(k; �)��� (20)

where

�̂ = max
�

X
�0

P��0
���0 � ��� ; k0m = max

k;�

����dk� (k)dk

���� ;
and M and s are numerical constants of order 1. The convergence of the iterative process

occurs if the numerical coe¢ cient in the right-hand side of inequality (20) is smaller than 1.

The small factor �̂, which is approximately equal to the conditional standard deviation of

the productivity shock, causes the fast convergence of our algorithm provided the di¤erence

1��k0m is not too small. The last requirement is satis�ed if the stability condition
���dk�(k)dk

��� < 1
holds in the solution region.

4 Comparison of Algorithms

In this section we compare the performance of the proposed algorithm (RUGS) with the

performance of the four numerical methods (linearization, projection, perturbation, and value

function iteration (VFI)) mentioned in the Introduction; for a description of these alternative

methods, we refer the reader to Aruoba et al (2006). (However, for the VFI method we follow

Danthine, Donaldson & Mehra (1989), which uses a simpler implementation.) Note here that

we use Chebyshev polynomials up to the 9th order for the projection method and a 5th order
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Taylor expansion for the perturbation method.

Each computational method is used to solve the basic problem given in eq. (1). To

facilitate comparison between our results and that of Aruoba et al. (2006), for the most part

we use the same parameter values as employed in their analysis. In particular, we assume that

the �rst-order autocorrelation of the technology shock is 0.95, i.e. Corr (�t; �t�1) = 0:95.

This is a degree of persistence commonly assumed in DSGE models. For the unconditional

standard deviation of the technology shock, we examine two settings: a low and commonly

used value of �" = 0:007 and a high degree of volatility in which �" = 0:035 thereby implying

�� = 0:022 and �� = 0:11. We then examine two settings that di¤er in the modeling of the

Markov process for the technology shock. First we examine a homoskedastic environment,

i.e. one in which the conditional second moments of �t are constant. This homoskedastic

assumption is used for the linear, log-linear and perturbation methods in which the process

is assumed to be continuous. We use a two-state (i.e. discrete state) process when solving

the model using RUGS, VFI and Projection methods. Also in a homoskedastic setting, we

use the same AR(1) process used by Aruoba et al. (2006) so we can compare more easily

the RUGS and Projection methods. We then examine a �ve-state discrete state setting with

a low probability crash state which, therefore, introduces heteroskedasticity into the shock

process. Table 1 presents the unconditional/conditional standard deviations of � for the two-

state and �ve-state models.7 As can be seen, this last setting introduces signi�cant variation

in the conditional standard deviation of �t. Consequently, the role of nonlinearities in the

7 The unconditional standard deviations for the technology shock in the discrete state models are not
exactly equal due to the calibration of the crash state scenario. Our goal was to explore the implications
of heteroskedasticity and, consequently, parameterized the Markov process to highlight this feature. The
di¤erence in unconditional volatility is not large enough to in�uence equilibrium behavior.
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policy rules should be highlighted in this setting.

For the two-state process, the transition probability matrix and possible realizations are

given by:

P =

0BB@ 0:975 0:025

0:025 0:975

1CCA ;� = (0:978; 1:022) (21)

For the �ve-state process, states 1 and 4 are considered �normal�low and high technology

shock states while states 2 and 3 are average technology shock states (�2 = �3 = 1 = E (�t)).

State 5 is a crash state in which the technology shock takes on a very low value. States 2

and 3 di¤er in the conditional probabilities of going to the crash state; speci�cally we assume

that the probability of a crash state in State 3 is twice that of State 2. This assumption

introduces, as seen in Table 1, heteroskedasticity in the shock process.

(Insert Table 1 about here)

The transition probability matrix and possible realizations are given by:

P =

0BBBBBBBBBBBBBB@

1� 2p1 p1=2 p1=2 p1 0

p1 1� 2p1 � p2 � � p2 p1 �

p1 p2 1� 2p1 � p2 � 2� p1 2�

p1 p1=2 p1=2 1� 2p1 0

0 1=2 1=2 0 0

1CCCCCCCCCCCCCCA
(22)

� = (1� �; 1; 1; 1 + �; 1��)

p1 = 0:017; p2 = 0:2; � = 0:005; � = 0:027;� = 0:35
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The multistate (nine-state) modeling of the continuous shock setup (see Appendix 6.2)

uses a Hermite-Gauss collocation in � and produces formally the same discrete-state rep-

resentation as given in equations (7) and (8). However, the coe¢ cients Pij can not be

interpreted as transition probabilities; indeed, some of these take on negative values. In-

stead, the procedure produces a parametrized expectation model with a continuous shock

setup.

The production function is assumed to be Cobb-Douglas:

f (k; n) = k�n1�� (23)

Utility takes the functional form:

u (c; 1� n) =

�
c� (1� n)1��

�1��
� 1

1� � (24)

For all simulations, we use the same parameter values as Aruoba et al. (2006):

Parameter � 
 � � � � �"

Value 0.9896 0.0196 0.4 (2; 8) 0.357 0.95 (0:007; 0:035)

These again are common values and produce steady-state values for the capital output

ratio and time spent in work activity consistent with U.S. data. The models were solved

under the assumption of low (� = 2) and high (� = 8) values of relative risk aversion8. The

value � = 8 for the nine-state model is combined with a high technology shock variance

8 It di¤ers from Aruoba et al. (2006), where �max = 50
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(�" = 0:035); this comprises the "extreme case" studied in Aruoba et al. (2006).

For each of the methods, we compare both accuracy and the speed of convergence. For

accuracy, we follow Aruoba et al. (2006) and de�ne accuracy in terms of the Euler equation

residual introduced in Judd (1992) and Judd and Guu (1997) as

EE = 1� (uc)
�1 (Et [(1� 
+ rt+1)uc (ct+1; 1� nt+1)])

ct
; (25)

where uc � @u
@c denotes the correspondent partial derivative. The implication is that the

approximation error is expressed as a percentage of steady-state consumption. Using formulas

(3) and (24), the above Euler equation (EE) error is expressed in our notation as:

EE (k; �) = 1�
"
��
P
�
02� P��0U1

�
k� (k) ; k�0 (k� (k)) ; n�0 (k� (k)) ; �

0�
U2 (k; k� (k) ; n� (k) ; �)

# 1
�(1��)�1

(26)

We examine the Maximal and Average Euler Equation Error. Maximal EE error is

de�ned by:

maxEE = max
k2[kl;kr];�2�

EE (k; �) (27)

where the interval [kl; kr] is equal to the solution interval. The average EE error is de�ned as

average of absolute value of EE (k; �) over a time series sample generated using the tested

policy functions. We use a sample length of 30000 to minimize the dependence on a speci�c

realization.
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4.1 Speed of convergence

We turn �rst to an analysis of the speed of the algorithms. (We do not report these for the

linear and log-linear procedures since these are virtually instantaneous.) Table 2 presents the

results (time is measured in seconds) for the remaining procedures. (We only report these

for the case where relative risk aversion is equal to 2; the results for the high risk aversion

economies were almost identical.) Note that in the �ve state economy, we compare only

the projection and RUGS methods since the perturbation approach is not appropriate (it

assumes the technology shock is homoskedastic) and the value function method is too time

consuming.9

(Insert Table 2 about here)

Hence, we see that the RUGS approach is comparable in convergence time to the other

globally accurate method (i.e. projection) due to the one-pass aspect of the procedure; more-

over, the RUGS performance improves in higher dimensional settings. The measurements

have been done using the computer AMD Turion MT-30 (1.6GHz) with 1Gb of RAM under

Windows XP.

4.2 Error

The maximal and average Euler equation errors for each procedure are given in Tables 3

and 4. Note that the numbers given are the negative of the actual (logarithmic) values.

These numbers represent the percentage cost in term of steady-state consumption due to the

9 For the projection method, we use �fth, sixth and ninth order polynomials for the two-, �ve-, and
nine-state models, respectively
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approximation. A value of 2, for example, implies a mistake of $1 for every $100 spent while

a value of 4 implies a $1 mistake for every $10,000 spent.

(Insert Tables 3 and 4 about here)

It is clear from the numbers reported in both Tables that the projection method and

RUGS produce roughly the same level of accuracy and this is signi�cantly more accurate

than the other procedures. A further comparison of these two methods is presented in Figure

1 in which the tradeo¤ between computational time and accuracy are presented. (Here, the

comparison is for the extreme case economy.) Again, the advantage of the RUGS approach

when greater accuracy is desired is clear.

Figure 2 presents the Euler Equation errors over the range of the capital stock with

the shaded area representing a range of 3�k (top panel of Figure 2) and over the range of

technology shocks 1 � 3�� (bottom panel of Figure 2). The RUGS and Projection curves

correspond to the homoskedastic extreme case (� = 8 and �� = 0:035). These graphs

duplicate the message of Tables 3 and 4: the globally accurate methods are preferred in

setting with high risk aversion and high volatility.

A �nal comparison is in terms of the policy functions generated by the solution methods.

Here we focus on a comparison of the RUGS approach and the linear approximation method

since the latter is commonly employed in the literature. The policy functions for labor and

investment (as a function of capital) from the two- and �ve-state models are presented in

Figures 3 and 4. In the two state economy, the policy functions are shown for the case when

�t = �2 while in the �ve state economy, we plot the policy functions for both states 2 and 3

where �2 = �3 = E (�t) :The roles that heteroskedasticity and risk aversion play in a¤ecting
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the accuracy of the linear approximation methods is evident in the graphs. Recall that in

the two models (i.e. two-state and �ve-state), the unconditional standard deviations of the

technology shock are roughly equal (see Table 1) and roughly equal to the relatively low value

used in the literature: In Aruoba et al. (2006), the linear approximation method worked well

in this setting when relative risk aversion was also in a reasonable range (i.e. below 10). As

the graphs demonstrate, this is not the case when the shock exhibits heteroskedasticity. In

the two state, homoskedastic setting, all methods produce similar policy functions (although

the errors in the policy functions from the linear method as one moves away from the steady-

state level of capital are evident). However, in the �ve state, heteroskedastic setting, the

linear approximation produces fairly signi�cant errors in regard to the labor policy function

when combined with a risk aversion parameter of 8. Since heteroskedasticity appears to be

important in understanding asset pricing movements, solution methods that are accurate

in such settings may be useful.10 In the �nal graph (Figure 5), we demonstrate that in

the extreme case of relatively high risk aversion (� = 8:0) and very high volatility in the

technology shock (�" = 0:035), the linear approximation method produces signi�cant errors

with regard to the policy functions.

5 Some Final Remarks

The solution method presented here is fast and, consequently, useful in discrete and continu-

ous state settings characterized by heteroskedastic or homoskedastic shocks to the economy.

10 Note that the slope of the policy function for investment shifts from negative to positive when risk
aversion goes from 2 to 8. This is a standard result (see Aruoba et al. (2006)) and re�ects the relative
strengths of the income and substitution e¤ects of capital as determined by the curvature of agents�utility
function.
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While we have presented the solution method in the context of a simple RBC framework,

in principle the RUGS method can be extended to models with more than one endogenous

state variable (such as lagged consumption in a model with habit persistence). Below we

discuss some possible di¢ culties in such an extension and present suggestions in how they

can be avoided.

To apply the UGS method we need to �nd the deterministic trajectories starting from the

equilibrium point of the model. A model with n state variables has an (n� 1)-dimensional

set of such trajectories. The complications that arise with the multidimensional RUGS are

due to that multiplicity.

1. The number of trajectories we need to calculate at each step is proportional to Nn�1,

whereN is the number of grid trajectories along one dimension (if we havem continuous

shocks, the factor of Nm should also be added). So the method is subject to the curse-

of-dimensionality; (however, this problem is common to any of the global accuracy

methods, e.g. projection methods).

2. To obtain a set of trajectories using the UGS method, we need to start in the vicinity

of the steady-state point. If some of the stable eigenvalues are close to 1 and others

are not (e.g., �1 = 0:8; �2 = 0:2) then one can show that, near the steady-state, all the

trajectories approach closely the curve corresponding to the largest eigenvalue and it

will be di¢ cult to distinguish them given a �nite accuracy of calculations. To avoid that

issue we may (a) extend the distance between the starting points of trajectories and the

steady-state point using more precision than implied by a linear local approximation

or (b) increase locally the working precision of calculations.
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3. The stochastic shocks shift the solution from a �xed discrete grid of trajectories, so to

calculate the expectations we need to approximate the solution between the grid tra-

jectories. A good choice for this approximation method may be a Fourier interpolation

or a spline interpolation since these produce high precision results for a relatively low

number of nodes.

Hence, while the RUGS approach can be extended in theory to a multidimensional state

setting, it is not a trivial extension.

As the heteroskedastic environment that was studied in the paper suggests, we think it

would be interesting to use this model in a crash state scenario as discussed recently in Barro

(2006) and Salyer (2007). In particular, the latter paper demonstrated that Lucas�s (1987)

analysis of the welfare costs of business cycles severely understates the costs of �uctuations

when a rare but catastrophic state in consumption growth is present. But this exercise

is limited in that consumption growth was assumed (as in Lucas (1987)) to be exogenous.

The question is whether a crash state in technology would correspond to a crash state in

consumption; related to this is the question of whether the capital stock would be signi�cantly

di¤erent (say to precautionary saving) in such an economy relative to an economy with

homoskedastic technology shocks. We leave the analysis of these questions to future research;

but the solution method developed here would be appropriate for analysis in these settings.
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6 Appendix

6.1 Convergence and Existence proof of RUGS

The detailed form of equation (19) is:

�
dk� (k)

dk

��1
k̂
(m)
� (k)

24�(1; 2; k; �) + �dk� (k)
dk

X
�
02�

P��0�
�
k�; �

0�35� �k̂(m)� (k�)� (1; 2; k�; �) =

(28)

�

24k̂(m�1)� (k)
X
�
02�

P��0�
�
k�; �

0�+ X
�
02�

P��0 k̂
(m�1)
�0

(k�)�
�
1; 2; k�; �

0�35 ;
where

�(k; �) = � (1; 1; k; �) +
dk� (k)

dk
�(1; 2; k; �) ; (29)

�(i; j; k; �) =
Uij (k; k�; n�; �)Ui3 (k; k�; n�; �)� Ui3 (k; k�; n�; �)Ui3 (k; k�; n�; �)

Ui3 (k; k�; n�; �)
;

where Uij (k; k�; n�; �) denotes the second partial derivative of function U (:) with respect to

the ith and jth arguments. We have used in the derivation the following from (15) and (16)

identities

�(1; 2; k; �) +
dk� (k)

dk

24�(2; 2; k; �) + �
0@�(k; �) + X

�
02�

P��0�
�
k�; �

0�1A35 = 0; (30)

U13 (k; k�; n�; �) + U23 (k; k�; n�; �)
dk� (k)

dk
+ U33 (k; k�; n�; �)

dn� (k)

dk
= 0

24



To produce an estimate of (20) let�s note that in general (28) has the form:

a(k)y(k) = b
�
K̂k
�
y
�
K̂k
�
+ g(k); (31)

where K̂k � k� (k). Iterating (31) N times with the help of the substitution

y
�
K̂nk

�
=
b
�
K̂n+1k

�
a
�
K̂nk

� y
�
K̂n+1k

�
+

1

a
�
K̂nk

�g �K̂nk
�
;

we arrive at the relation:

y(k) = y
�
K̂N+1k

� b�K̂N+1k
�

a(k)

NY
m=1

b
�
K̂mk

�
a
�
K̂mk

� + 1

a(k)

NX
n=0

24g �K̂nk
� nY
m=1

b
�
K̂mk

�
a
�
K̂mk

�
35 (32)

Note that in our case limN!1K̂Nk = ks. Then if j b(ks)a(ks)
j< 1, the proceeding to the limit

N !1 in (32) yields:

y(k) =
1

a(k)

1X
n=0

24g �K̂nk
� nY
m=1

b
�
K̂mk

�
a
�
K̂mk

�
35 (33)

Relation (33) produces the estimate:

jy(k)j � max
k

1

1� max
k02[ks;k]

��� b(k0)a(k0)

���
max

k02[ks;k]
jg(k0)j

ja(k)j

Substituting actual values of the terms in the above inequality yields estimate (20):
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max
k;�

���k̂(m)� (k)
��� � �̂ �k0mM

1� �k0m
�
1 + s�̂

� max
k;�

���k̂(m�1)� (k)
��� ; (34)

where

�̂ = max
�

X
�0

P��0
���0 � ��� ; k0m = max

k;�

����dk� (k)dk

���� ;
s = max

k;�;�0

������
�
k�; �

0���(k�; �)
� (1; 2; k; �)

�
�0 � �

� ����� ;M = max
k;�

�0 +�0 (1; 2) + � (1; 2)

j�(1; 2; k; �)j ; (35)

�0 = max
k02[ks;k];�0

������
�
k0; �0

�
��(k0; �)

�0 � �

����� ;�0 (1; 2) = max
k02[ks;k];�0

������
�
1; 2; k0; �0

�
��(1; 2; k0; �)

�0 � �

����� ;
�(1; 2) = max

k02[ks;k];�

��� �1; 2; k0; ����

We assume that the values like �(k;�
0)��(k;�)
�0�� ; k̂

(m�1)
(k;�0)�k̂(m�1)(k;�)

(�0��)k̂(m�1)(k;�)
are of order 1. How-

ever in our setup � takes a discrete set of values and the derivatives @k�(k)
@� ; @k̂�(k)@� are not

de�ned. Nevertheless, the direct numerical calculations in our example show that this state-

ment is true. One can show that the denominator ofM , �(1; 2; k; �) > 0 if the utility u (c; l)

is a logarithmic or exhibits decreasing returns to scale, so that the constantM is �nite. More

precisely, expressing the function U (k; k0; n; �) through u (c; 1� n) with the help of formula

(3), we obtain:
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U33 (k; k�; n�; �)� (1; 2; k; �) = �uc (�wwkuc;c � (1� 
+ �r)wnuc;c + wkuc;n)�

(1� 
+ �r)
�
uc;cun;n � u2c;n

�
< 0;

U33 (k; k�; n�; �) = �ucwn �
�
�w
p
�uc;c �

p
�un;n

�2 � 2�w �puc;cun;n � uc;n� < 0;

where r = fk (k; n) ; w = fn (k; n) denote the interest rate and wage respectively and wk,

wn etc. are the corresponding partial derivatives. The above inequalities follows from the

estimate of the sign of each term in these relations provided the utility function is logarithmic

or decreasing returns to scale and the production function is constant returns to scale (e.g.,

�wwkuc;c < 0 because w > 0; wk > 0; uc;c < 0 and so forth).

6.2 Continuous Expectation Approximation Using Hermite Collocation

The common approach to approximate the conditional expectation operator

Eg (z) �
Z
�
�
zjz0
�
g
�
z0
�
dz0

is to replace the integral in the right-hand side by a �nite sum

Eg (z) =

NX
j=1

wj (z) g (zj) ; (36)

where the nodes zj and weights wj (z) can be de�ned using various procedures (see, e.g.,

Tauchen (1986,1991)). In our case of an AR (1) process for z = � � 1 with a Gaussian
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distribution of shocks "

Eg (z) � 1p
2�

Z 1

�1
e�

"2

2 g (�z + �") d" (37)

it is convenient to use the �nite-term Hermite expansion:

g (z) �
N�1X
n=0

gnHn

� z
L

�
; (38)

In this case, the integral on the right-hand side of (37) can be easily computed using the

Gauss transformation of Hermite polynomials (Bateman, Erdélyi (1953)):

1p
2�

Z 1

�1
e�

"2

2 Hn

�
�z + �"

L

�
d" =

 r
1� 2

��
L

�2!n
Hn

0@ �z

L
q
1� 2

�
�
L

�2
1A ;

so we obtain:

Eg (z) =
N�1X
n=0

 r
1� 2

��
L

�2!n
gnHn

0@ �z

L
q
1� 2

�
�
L

�2
1A (39)

The Hermite-Fourier coe¢ cients can be approximated using the Hermite-Gauss quadra-

ture formula:

gn =
1

2nn!
p
�

Z 1

�1
e�x

2
g (Lx)Hn (x) dx �

1

2nn!

NX
j=1

wjg (Lxj)Hn (xj) ; (40)

where the nodes xj are zeros of the Nth-order Hermite polynomial, HN (xj) = 0, and the
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weights wj are:

wj =
2N�1N !

N2H2
N�1 (xj)

Substituting (40) into (38) and (39) we arrive at the N -point collocation in z space:

g (z) �
NX
j=1

Gj (z) g (Lxj) ; (41a)

Eg (z) �
NX
j=1

pj (z) g (Lxj) ; (41b)

where the basis functions Gj (z) and pj (z) are:

Gj (z) =
N�1X
n=0

1

2nn!
Hn

� z
L

�
Hn (xj) (42a)

pj (z) =

N�1X
n=0

1

n!

 
1

2

r
1� 2

��
L

�2!n
Hn

0@ �z

L
q
1� 2

�
�
L

�2
1AHn (xj) (42b)

Note that the functions Gj (z) satisfy the equalities Gj (Lxi) =

8>><>>:
1; i = j

0 i 6= j
, so relation

(41a) is indeed an interpolation formula.

We will use the above relations to approximate by �nite sum the continuous form of the

Euler equation (7)

U2 (k; k� (k) ; n� (k) ; �) + �
1p
2�

Z 1

�1
e�

"2

2 U1

h
k� (k) ; k�0(") (k� (k)) ; n�0(") (k� (k)) ; �

0 (")
i
d" = 0;

(43)

�0 (")� 1 = � (�� 1) + �"
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Substituting there

� = 1 + z; �0 (") = 1 + �z + �";

g (�z + �") = U1

h
k� (k) ; k�0(") (k� (k)) ; n�0(") (k� (k)) ; �

0 (")
i

and using formula (42b) for the discrete set of values zi = �i � 1 = Lxi; i = 1; :::; N , we

obtain equation (7) with the transition matrix

P�i�j = pj (Lxi) =
2N�1N !

N2H2
N�1 (xj)

N�1X
n=0

1

n!

 
1

2

r
1� 2

��
L

�2!n
Hn

0@ �xiq
1� 2

�
�
L

�2
1AHn (xj)

(44)

The natural choice of scaling factor L =
p
2�
�
1� �2

��1=2 i.e., roughly equal to the
standard deviation of z, simpli�es (44) to:

P�i�j=
2N�1N !

N2H2
N�1 (xj)

N�1X
n=0

1

n!

��
2

�n
Hn (xi)Hn (xj) (45)

6.3 Notes on Programming

All algorithms and procedures were programmed using Mathematica 5.0 ; all programs are

available from the authors.

6.3.1 RUGS

As described earlier, the basic one-pass algorithm of RUGS method requires the numerical

solution of an algebraic system, depending on the continuous parameter k. The correspond-

ing numerical algorithm available in Mathematica 5 is the Newton algorithm used in the
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IDA package of the NDSolve function. The IDA package was implemented initially at the

Lawrence Livermore National Laboratory as a part of the free open source package SUN-

DIALS. More detailed description of the method can be found in Hindmarsh et al. (2004),

Brenan, Campbell & Petzold (1996) and in the user documentation to the IDA library, Hind-

marsh, Serban, and Collier (2006). As stated in the references above, the IDA package solves

the initial value problem for the canonical system

F
�
t; y (t) ; y0 (t)

�
= 0; (46)

y (t0) = y0; (47)

y0 (t0) = y1 (48)

(with the vector functions F and y and the independent scalar variable t) using an adaptive

version of the Backward Di¤erentiation Formula (BDF) algorithm. Below we present a brief

description of the algorithm based on the references above. Equation (14) is a special case of

(46) with t = k, y =

0BB@ k0

n

1CCA and the left-hand side of (14) as the function F = F (t; y (t)),

which does not depend on the derivative y0 (t). I.e., it represents in that case an algebraic

system of equations depending on a scalar continuous parameter.

For our application it is important to note that the NDSolve function employs an adaptive

scheme, i.e. the numeric step of the solution is variable and depends on the required accuracy.

The solution itself is returned in the form of a piecewise-polynomial interpolating function

(given by the InterpolatingFunction object in Mathematica). Note that these features

imply it is not necessary to create a discrete grid for the capital stock.
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Note also that for those who prefer Matlab or C programming, (along with the SUN-

DIALS package) they may approximate the solution for the output and for the �external

function�
�
~k (k) ; ~n (k)

�
in equation (14) using a piecewise polynomial Hermite interpola-

tion. We add a brief description of this interpolation below.

BDF Method The IDA implementation of BDF method solves initial value problem (46)

at the interval T0 � t � T1 at discrete number of points T0 = t0 < t1 < : : : < tn < : : : < tN =

T1 using adaptive steps hn = tn�tn�1. The essence of the BDF method is the approximation

of the derivative y0 by the values of the function at several previous nodes:

y0n = h
�1
n

qX
i=0

�n;iyn�i; (49)

where the coe¢ cients �n;i depend on the previous step sizes hn�q+1; : : : ; hn and on the order

q (see Brenan, Campbell & Petzold (1996) for exact formulas). The substitution of (49) into

(46) produces the algebraic equation:

F

 
tn; yn; h

�1
n

qX
i=0

�n;iyn�i

!
= 0; (50)

which is solved w.r.t. yn using the Newton method. To describe brie�y the sequence of

operations performed to make the (n+ 1)th step of the method, we follow the documentation

of IDA package (see, Hindmarsh, Serban, and Collier, 2006):

1. De�ne the next integer order q 2 [1; 5]. At each step the algorithm uses the maximal

possible order (from 1 to 5), which provides a convergent solution. The maximal
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feasible value of q provides the maximal step of solution (and maximal performance of

the algorithm) given the accuracy required.

2. De�ne the next tentative step size hn+1 using the equation max [" (hn+1) ; "I (hn+1)] =

"0, where " (hn+1) is the estimate of error to the solution at the point tn+1 = tn+hn+1

and "I (hn+1) is the maximal error of the approximation to the solution at the interval

tn � t � tn+1 using q-point polynomial interpolation.

3. Find the �rst guess y(0)n+1 = y
(0) (tn+1) to the solution at the next point tn+1 (predictor)

using qth order polynomial extrapolation.

4. Find the corrected solution yn+1 (corrector) solving equation (50) by the Newton

method [Judd�s monograph] with the predictor y(0)n+1 as an initial guess.

We omit the details of the stages above referring to the documentation, Hindmarsh, Ser-

ban, and Collier (2006), because (a) these details do not clarify the RUGS algorithm (which

can be implemented as well using another similar package) and (b) they are unnecessary for

a user of the package. Note also that at the initial step t = t1 the value of q is set to 1. Then

it is increased up to 5 or smaller maximal feasible value when the number of precedent steps

and convergence criteria allow that.

Note that the solution is approximated between the grid points t0; : : : ; tN using a q-

point Hermite polynomial interpolation, i.e. the interpolation involving the grid values of

the sought function y (tn�q+1) ; : : : ; y (tn) and its derivatives y0 (tn�q+1) ; : : : ; y0 (tn). This

approximation is chosen, because (a) it is computationally the simplest way to reach the

required accuracy and (b) the calculation of the predictor y(0)n+1 (see step 3 of BDF routine

33



above) uses the same polynomial formula for extrapolation.

Note also that an adaptive scheme of step choice greatly increases the ratio �accu-

racy/computer time�and is a conventional workhorse of DAE/ODE solvers, however a more

simple, �xed step algorithm may be implemented as well.

6.3.2 Projection

The numeric solution of nonlinear equations for projection coe¢ cients is performed using the

FindRoot function in Mathematica; this uses the Newton algorithm.

6.3.3 Perturbation

The method requires the sequential calculation of partial derivatives so that a programming

language with the capability of symbolic calculations is highly useful. Hence the usage of

Mathematica is critical for this method.

6.3.4 Value Function Iteration

The Value Function Iteration algorithm does not require any unique properties of Mathe-

matica.
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Table 1: standard unconditional/conditional standard deviations of �
Number of states (N) s = 2 s = 5

Unconditional s.d.(��) 0:022 0:028

i ��;i i ��;i
Conditional s.d. 1 0:022 1 0:0078

2 0:022 2 0:025
3 0:035
4 0:0078
5 0
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Table 2: Speed of Convergence
Method Time (s = 2) Time (s = 5) Time (s = 9)

Perturbation (5th order) 5 na 5
Value Function Iteration 77 na na

Projection 1.9 16 528
RUGS 1.7 49 293
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Table 3: Euler Equation Errors in the Low Risk Aversion Economy
Risk aversion (� = 2) s = 2 s = 5 s = 9

Max EE Average EE Max EE Average EE Max EE Average EE

Linear 3.0 4.7 na na na na
Log-linear 2.5 3.7 na na na na
Perturbation 4.8 4.9 na na na na

Value Function Iteration 2.2 3.2 na na na na
Projection 6.8 7.9 6.7 8.7 6.7 7.9
RUGS 6.8 7.2 6.3 7.0 6.4 6.6
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Table 4: Euler Equation Errors in the High Risk Aversion Economy
Risk aversion (� = 8) s = 2 s = 5 s = 9

Max EE Average EE Max EE Average EE Max EE Average EE

Linear 1.3 3.1 na na na na
Log-linear 2.0 3.3 na na na na
Perturbation 1.9 4.3 na na na na

Value Function Iteration 2.2 3.1 na na na na
Projection 6.9 7.7 6.7 8.6 4.3 5.7
RUGS 6.6 6.9 6.2 6.7 5.0 6.0
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Figure 1: Maximal Euler Equation Error vs real computation time for RUGS and 
projection methods solving nine-state model, t=8, s=0.035 
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Figure 2: Euler Equation Error for different methods of solution: EE(k) for l=1 and 
EE(l) for k=ks. t=8, s=0.035. 
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Figure 3: Policy functions (hours and investment) for the two-state model; l=l₂. 
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Figure 4: Policy functions (hours and investment) for the five-state model; l=l₂ (solid 

curve) and l=l₃ (dashed curve). 
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Figure 5: Policy functions (hours and investment) for the nine-state model, l=1. The 
first row corresponds to t=2, s=0.007 and the second row corresponds to t=8, s=0.035. 
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