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Abstract

This paper raises the problem of how to define revealed probabilistic beliefs in the
context of the capacity / Choquet Expected Utility model. At the center of the analysis
is a decision-theoretically axiomatized definition of “revealed unambiguous events”. The
definition is shown to impose surprisingly strong restrictions on the underlying capacity
and on the set of unambiguous events; in particular, the latter is always an algebra.
Alternative weaker definitions violate even minimal criteria of adequacy.

Rather than finding fault with the proposed definition, we argue that our results
indicate that the CEU model is epistemically restrictive, and point out that analogous

problems do not arise within the Maximin Expected Utility model.
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1. INTRODUCTION

Following Ellsberg’s (1961) classical experiments, it has become widely accepted that the
preferences of empirical decision-makers often violate the consistency conditions character-
istic of classical Subjective Expected Utility theory, and in particular that they fail to reveal
a well-defined subjective probability measure. By now, there exists a variety of axiomatic
models designed to accommodate Ellsbergian behavior; the two most frequently studied
are the Choquet and Maximin Expected Utility Models (CEU respectively MMEU) due to
Schmeidler (1989) respectively Gilboa-Schmeidler (1989).

While on a heuristic and rhetorical level the epistemic distinction between risk and un-
certainty has been important in stimulating an interest in such non-standard models, little
work has been done in determining their epistemic content, i.e. in relating preferences to
appropriate notions of belief (see Epstein-Zhang (1996), Sarin-Wakker (1995), and Nehring
(1994), as well as Ghirardato (1996), Mukerjee (1996), and Nehring (1991) from rather
different perspectives).

This paper addresses a particular issue within this general problematics: when can one
legitimately attribute to an agent an unambiguous probabilistic belief about an event or
set of events? And, in a related vein: which conditions must preferences satisfy in order to
reflect / be consistent with a set of given (“objective”) probabilities?

A satisfactory answer to these basic questions seems not only essential to an adequate
understanding of models of non-probabilistic uncertainty, it also promises to have significant
value in applications. By allowing to “localize” ambiguous beliefs, it should yield models
with more specific predictions and sharper comparisons to traditional “global” expected-
utility models. For example, in a game-theoretic context, one may want to describe the
extensive-form game itself (in particular the “moves of Nature”) in standard Bayesian man-
ner in terms of unambiguous probabilities, while allowing at the same time for ambiguity

in players’ beliefs about other players’ strategic choices (“strategic uncertainty”) .

We will conduct the analysis in the context of the CEU or “capacity” model as does

most of the existing epistemic literature. The first thing to note is that, as simple and as



elementary as they look, the questions raised do not have an obvious answer. Indeed, it will
be seen that it is not even clear that any satisfactory answer exists within the CEU model.

The non-triviality of the issue becomes clear through the following preliminary consider-
ation. For an agent to believe in the occurrence of some event A with subjective probability
a, not only must the capacity of A, v(A), be equal to «, but that of the complement
1 —v(A) must be equal to its probability 1 — « as well. Yet more is required. If in addition
the agent believes in the occurrence of the disjoint set B with subjective probability &, then
he also believes (of conceptual necessity) that the probability of the event AU B is equal
a + 3, hence v (AU B) must be equal to a + 3 = v (A) + v (B). Probability judgements
have a “logical syntax” that needs to be accounted for.

In the literature, only the very recent and thorough contribution by Zhang (1997) has
taken up the issue of defining revealed probabilistic beliefs explicitly in the context of
an axiomatization of CEU preferences for capacities that can be represented as “inner
meastres”.! Otherwise, the special case of probability one beliefs has received quite a bit of
recent interest (see Haller (1995), Morris (1995), Sarin-Wakker (1995)); the issue has also
connections with that of defining independent product capacities (see Hendon et al. (1995),

Ghirardato (1997) and Eichberger-Kelsey (1996); cf. section 5).

The plan for the remainder of the paper is as follows.

Section 2 sets out the issue of defining “revealed unambiguous events” from a capacity,
and establishes criteria for the “soundness” of any proposed definition. These criteria are
violated by the simplest natural definitions (section 3).

In section 4, capacities are interpreted as “rank-dependent probability assignments”; this
suggests a definition of unambiguous events with a canonical look to it. It is derived from
conditions on preferences whose applicability and appeal are not restricted to the CEU
model. All proposed definitions are shown to coincide for the class of convex capacities.

Section 5 characterizes the surprisingly strong implications of unambiguous events for

the underlying capacity, and shows that the class of unambiguous events is always an

'Sarin-Wakker (1992) define “revealed unambiguous partitions”.



algebra. The latter implies for example that whenever a decision-maker has unambiguous
beliefs about the marginal distributions of each of a collection of random variables, he has
unambiguous beliefs about their joint distribution as well. For convex capacities, this result
takes a particularly striking form: if a convex capacity has additive marginals on a product
space, it must be a probability measure.

These apparently overly restrictive implications might be accounted for in two ways: they
may indicate that the adopted definition is too strong; alternatively, they may show that
the CEU model is applicable only when an agent’s probabilistic beliefs take a certain form.

In the concluding section 6, we argue for the latter as the more plausible interpretation.

2. CRITERIA FOR THE DEFINITION OF UNAMBIGUOUS EVENTS

Let S be a finite set of states with #S = n, and let A denote the probability-simplex
on S.

A capacity v is a mapping from the power set 2% of S into [0,1] such that v () = 0,
v(S) =1, and v (A) > v(B) whenever A D B. It is convex if for all A, B € 2% : v(A) +
v(B)Sv(ANnB)+v(AUB).

The expectation of a random-variable f : S — R with respect to the capacity v is defined

as its Choquet-integral
[ Far =37 £ (50 0 st D) = v 51,5101,
: k=1

with {sy};_; _,, chosen such that f(s;) > f (sx) whenever j < k.2

Let C denote a set of consequences. An act x maps states to consequences, z : S — C,
or, in equivalent notation, x € C°. A preference ordering = on C*° has a “Choquet Expected
Utility” (CEU) representation if there exist a capacity v and a utility-function v : C' — R
such that « = y if and only if [woxdy > [uoydy.

To simplify argument and notation, we will focus on “risk-neutral” decision-makers with

C =R and u = id. As long as the “true” utility-function u is defined on a connected domain

?Equivalently, this can be written as [ fdv = f (s,) + nil (f (sk) — f(sk41)) - v ({51, s Sk}) -
E=1



C and is continuous, this is without effective loss of generality. Under risk-neutrality, a
capacity induces a unique CEU preference-ordering =, according to the condition: = >, y
if and only if [zdv > [ydv.

The task is to define from a given preference-relation >, a collection of “revealed unam-
biguous” events A% for which the agent is understood to have probabilistic beliefs. Within
the CEU-model (which is assumed throughout), this is equivalent to defining A%* directly
in terms of the associated capacity v due to the one-to-one relation between the two. Con-
ceptually, a primitive definition of unambiguous events should be in terms of the preference
relation as the primitive entity; this point of view is adopted in section 4 which attempts to
provide “the right” definition. On the other hand, the implications of any given definition
are more easily described in terms of the capacity representation; likewise, the set of possible
definitions is more easily surveyed in terms of the representation.

Thus, we will take a definition of revealed unambiguous events to be a mapping AL :
v — A% To be satisfactory, it should have the property that for any three events A, B, C
such that the value of a probability measure on C is uniquely determined by its values on
A and B, C should be in A%* whenever both A and B are, for any capacity v. Specifically,
Al should be closed with respect to disjoint union as well as complementation. In the
measure-theoretic terminology introduced by Zhang (1997) into decision-theory, A% must

be a A-system.

Definition 1 A collection A € 2° is a A — system if it has the following three properties:
i)0,S €A,
ii) A Be A, ANB=0= AUB € A.
iii) Ae A=A e A
A is an algebra if it satisfies in addition

iv)A,Be A= ANBec A.

In general, one will not want A* to be an algebra. For instance, if S = 57 x So, with
non-singleton S; and S, then A% = {T x Sy | T C S1} U{S1 x T |T C Sy} says that an

agent has “unambiguous”, “probabilistic” marginal beliefs about each component of the



state, but “non-probabilistic”, “ambiguous” beliefs about their joint distribution. In this
case, A»? is a A-system but not an algebra.
Furthermore, one will want v on A%* to be “coherently interpretable” as a probability;

this is captured by

Definition 2 v is probabilistically coherent on A if there exists a probability measure p on

25 that agrees with v on A.

Note that, due to the requirement that p be defined on all of 25, “probabilistic coherence”
implies additivity of v on A but is typically stronger, even if A is a A-system (see fact 2
below). As shown by the following example, requiring v to be probabilistically coherent on

Al is not quite enough.



Example 1 Suppose a state is the outcome of a draw from an Ellsbergian wrn with 100 balls
of the four different colours white, yellow, red, and black, and that the agent knows that 90
balls are white or yellow, and that 90 balls are white or red. This is naturally modelled
by setting S = {W,Y, R, B}, and definining a probability measure on the \—system C =
{W, Y} AR, B} AW, R}, {Y, B},0,5} by o({W,Y}) = ¢({W, R}) = 0.9, ¢ ({R,B}) =
d({Y,B}) =0.1, ¢(0) = 0, ¢(S) = 1. Consider the capacityv (A) =sup {¢(F) | E € C,E C A},
the “inner measure” of ¢ (Zhang (1997)). Suppose that AL is such that A% = C. Then AL®
satisfies the desiderata mentioned above: it is a A-system, and v on AL* is probabilistically

coherent.?

Nonetheless, v is not “truly consistent” with the information given . In particular,
v({W}) =0, while v ({Y, R, B}) = 0.1 ; in terms of decision making, betting on the draw of
a white ball is dispreferred to betting on the draw of a non-white ball , i.e. 11y g gy = 1w,
with 14 denoting the indicator-function of the event A. Since there are at least four times
as many white balls in the urn as there are non-white ones, this seems hardly acceptable:
it is materially irrational for the decision-maker to bet on the event that is unambiguously
less likely in view of his information.* Thus, the capacity v does not fully incorporate the
probabilistic information about the events in C. In other words, on the correct definition of
At C should not be contained in 4%

Motivated by the above discussion, the requirements on a minimally satisfactory definition

of unambiguous events are summarized in the following notion of “soundness”.

3This example is similar to example 1.1 of Zhang (1997).
“Note that the event {Y, R, B} is unambiguously less likely than the event {W}, although neither event

is unambiguous in itself.



Definition 3 A definition of revealed unambiguous events AY® : v — A% is sound iff , for
all capacities v :
i) AU is a A-system,

i) for all E € 25 : v is probabilistically coherent on A% U{E} .

To illustrate the force of clause ii), consider again example 1. Here v fails to be prob-
abilistically coherent on AL* U {W} , whenever A% O C . To be sound, v would need to
satisfy v({W}) > 0.8 and v({Y, R, B}) < 0.2.

If A% is an algebra rather than merely a A-system, the second clause simplifies.

Fact 1 If A% is an algebra, the following two statements are equivalent:

i) for all E € 25 : v is probabilistically coherent on A“* U{E} .

i) v is additive on ALY, i.e. for all A, B € A% such that ANB=0,v(A)+v(B)=
v(AUB) .

A trivial example of a sound definition of revealed unambiguous events is the constant
mapping v — {(, S} for all v . Thus “soundness” of the definition says only that the events
given by A% can be thought of as “genuinely unambiguous / probabilistic”; it does not

address the issue whether A%* comprises all “genuinely probabilistic” events.

3. WEAK DEFINITIONS DON’T WORK

A particularly simple and straightforward definition of unambiguous events is given by
A = {AE 2% | v (A) + v (A°) = 1}.

This however fails miserably: A2 is generally not closed under disjoint unions, thus failing
to qualify as a A-system. Moreover, even if A3 happens to be an algebra, v may fail to be

additive on A3.

Example 2 Let S = {a,b, s} and define v by



() = 0 if #Ail

1 if #A>2

Here A3 = 25, but v is not a probability-measure.

The example suggests that A2 fails to “build in” additivity with respect to events outside

the partition {A, A°}. A natural move is to strengthen the definition to

AZ.={Ac2®

v(AUB) —v(B) =v(A) for all B such that AN B = 0}.

A2 seems on the right track; for instance, it ensures additivity of v on A2 whenever the
latter is an algebra. A2 has been adopted with reservations by Zhang (1997), who gives a
preference-based characterization of it and notes that it may fail to be a A -system, violating
closure under complementation (condition iii)) as for instance in example 2, where A% =
{A e 29 | #A > 2} . He responds to this by simply imposing closure under complementation
on AZ; note that this is in effect a restriction on the domain of capacities to which the
definition v +— A2 is applied.

Yet even if this domain-restriction is accepted, A2 is unsound. In example 1, for in-
stance, A2 = C, which makes A2 unsound as shown above. Indeed, v may even fail to be

probabilistically coherent on AZ2.

Fact 2 There exist capacities v such that A% is a A\-system and v is not probabilistically
coherent on A?; in particular, not every q that is additive on a \-system A can be extended

to a probability-measure on 2°.

Proof. See appendix.



4. A PREFERENCE-BASED DEFINITION OF UNAMBIGUOUS EVENTS

Consider a risk-neutral® decision-maker who has to decide between two acts z and y such
that x —y is {A, A°}-measurable (i.e. constant within A and A°) and such that x4 > ya.
A decision in favor of x over y can be viewed as accepting the incremental bet x — y on
A. Tf the decision-maker assigns an unambiguous subjective probability to the event A, the
incremental bet has an unambiguous expectation, and it seems highly reasonable that he
should accept this incremental bet if and only if its expectation is positive. Conversely, this
condition yields a natural criterion for the non-ambiguity of an event based on preferences

over acts.

Definition 4 The event A is »=-unambiguous if, for all x, y such that x —y is {A, A°}-

measurable, x =y < x —y = 0.

Example 3 Consider an Ellsbergian four-color urn with 100 balls analogous to example 1.
Now, the decision-maker knows that 50 balls are white or yellow, and that 50 balls are white
or red. Letting C = {{W,Y},{R,B},{W,R},{Y,B},0,S}, and

P({W Y} = o({W,R}) = 6 ({R,B}) = ¢ ({Y; B}) = 0.5, 6(0) = 0, ¢(5) = 1, define
the capacity v* (A) =sup {¢(E) | E€C,E C A}.

Consider the preference relation =, induced by the capacity v* and the acts x = (—1,9,9,29)
and y = (0,10,0,20). Then z —y = (—1,—-1,9,9) is {{W,Y},{R, B}}-measurable, with
[(z —y)dv* = 4 (which is equal to the intuitively unambiguous expectation of x —y), and
thus @ —y =, 0. For the event {W,Y'} to be =,«-unambiguous, it must be the case that
T =+ y; however, since [xdv* =4 < [ydv* =5, in fact the converse holds. In other
words, the capacity v* does not fully incorporate the given probabilistic information. In-
deed, the assignment of a certainty-equivalent of 4 to the act x seems unacceptable, since,
conditional on being informed of the composition of the urn, the expected value of x is at

least 9, whatever the true composition is.

5 As mentioned above, this is without major loss of generality; in particular, “risk-neutrality” is an entirely
standard feature of models in which consequences are defined in “probability currency”, as in an Anscombe-

Aumann framework.
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The task of this section is to characterize =, -unambiguous events directly in terms of the
capacity; for this, it proves helpful to interpret capacities as “rank dependent probability
assignments”.

A ranking of states is a one-to-one mapping p : S — {1,....n}, let R denote the set
of such rankings. The ranking p is a neighbour of p' (“pNp'”) iff, for at most two states
s €S :p(s) # p(s), and, for all s € S, | p(s) — p'(s) |< 1. A mapping 7 : R — A is
called a rank-dependent probability assignment (RDPA) iff for all p, p/ such that pNp/, and
all s € S such that p(s) = p'(s) : mp({s}) =7y ({s}).

For any capacity v, define a mapping 7 : R — A® by m({tH)=v{slp(s) <p)}) -
v({s|p(s) <p(t)}). When there is no ambiguity, we will often drop the superscript in 7.

There is a one-to-one relation between capacities and RDPAs.

Proposition 1 A mapping 7 : R — AS is a rank-dependent probability assignment if and

only if there is a (unique) capacity v such that = = "

Proof. The if-part is immediate from the definition of an RDPA.
For the converse, in view of the following lemma, one can set v(A) = 7,(A) for any p such

that A= {s € S| p(s) < #A}. This yields a capacity v with the property that 7¥ = 7.

Lemma 1 For all A € 25 and p,p' € R such that A= {s € S| p(s) < #A} = {s € S |
pl(s) S#AL: mp(A) =my(A).

Proof of lemma. Note first that the claim of the lemma is straightforward from the
definition of an RDPA for all p, o’ such that A = {s € S| p(s) < #A} ={s € 5| p'(s) <
# A} and such that pNp'.

Now take arbitrary p, o € R . It is clear that there exists a sequence of rankings {p, }j <k
such that po = p,pr = p’ and p;Npj 1 for all j < k, and such that A = {s € S| p;(s) <
#A}. Since m,, (A) = mp,,, (A) for all j from the above, one obtains 7, (A) = 7y (A) as

desired. W

Say that p is comonotonic with x € R if, for all s and t, p (s) > p (¢) implies =, < 2. Tt

is easily verified that Choquet-integration of x amounts to ordinary integration with respect

11



to the appropriate rank-dependent probability measure 7, , i.e. that [xdv = [ xdn, for
any p that is comonotonic to z.

An interpretation of the capacity model and of Choquet-integration along similar lines
has recently been advocated by Sarin-Wakker (1995). It also arises naturally from within
Schmeidler’s (1989) classic contribution, in that his Comonotonic Independence axiom is
simply the Independence axiom restricted to comonotonic equivalence classes (classes of
acts comonotonic to the same ranking p).

On an RDPA interpretation of a capacity, ambiguity of an event is naturally associated
with dependence of the assigned probability on the ranking. Correspondingly, an event is
naturally defined as unambiguous if its rank-dependent probability does not depend on the
ranking :

Ay ={A |7 (A)=v(A) forall pe R }.

Note that it follows directly from the definition that AL is a A-system and that the

definition v — Al is sound.

Remark: Say that A is connected with respect to p if, for all s,s’,s” such that p(s) <
p(s) < p(s"), A> s whenever A D {s,s"}. Then A2 can be written as follows :
A2 = {A |75 (A) =v(A) for all p € R such that A is connected with respect to p}.

From a rank-dependent point-of-view, A2 looks like an ad-hoc-restricted version of AL.

That Al is the right definition of unambiguous events is confirmed by the following

theorem.

Theorem 1 The following three statements are equivalent:
i) Ae Al .
i) A is =, -unambiguous .
i11) For all x, y such that y is {A, A°}-measurable,
[(x+y) dv= [zdv+ [ydv .

Proof. The implications iii) = ii) and ii) = i) are easily verified; by contrast, the

implication i) = iii) is non-trivial.

12



Definition 5 For A € 25, let denote the following equivalence relation on R :
prap iff, for all s,t such that {s,t} C A or {s,t} C A°:
p(s) <p(t) <= p'(s) <p'(t).
Also, define for p € R and A € 2° an associated ranking 6 R uniquely by the following
two conditions:
i) foralls € A, t € A°:pa(s) <pal(t), and

i) pa =a p.
The key to the proof is the following lemma.

Lemma 2 If A€ AL, then, for all p,p’ such that pa p' : 7, = m,.

Proof of the lemma. Note first that it suffices to prove validity of the claim for
neighbouring rankings p and p’, since any two p and p’ satisfying p ~4 p’ can be connected
by a chain of neighbouring rankings p1, ..., px satisfying p; =4 pj41-

Assume thus A € Al and pNp/, take any B € 2%, and let v (A4) = o.

The following table describes the rank-dependent probabilities for the events in B :=

{ANB,AN B¢, A°N B, A°N B¢},

E 7o (E) Ty (E)
ANB 7, (AN B) 7y (AN B)
AN B° a—m,(ANB) a—my (AN B)
A°NB 7, (A°N B) Ty (AN B)
ANB¢|1—a—-7m,(A°NB) | 1-—a—7my (A°NB)

From p =, p/ and pN/y/, it follows that for exactly one s € A and exactly one s €
A°, p(s) # p'(s). Hence 7, (ANB) = 1y (ANDB) or 7, (ANB°) = 7wy (AN B°), as well
as m, (A°NB) = 1y (AN B) or 7, (A°N B°) = 7y (A°N B°). Inspecting the table, this
yields immediately 7, (AN B) = my (AN B) as well as m, (A°N B) = 7y (A°N B), hence
o (B) =7y (B). O

13



Consider now A € A and z, y such that y is {4, A°}-measurable. Let p be any ranking
that is comonotonic with . Then by the {4, A°}-measurability of y, x + y is comonotonic
with some p" such that p’ =4 p. By the lemma, 7, = 7. Note that [ydr, = [ydv since
Ae Al and y is {4, A°}-measurable.

Thus [(z+y)dv = [(x+y)dry = [zdny + [ydry = [xdr, + [ydny = [xdv
+ [ydv. W

It is also of interest to note that the proper definition of unambiguous events is a live

issue only for non-conver capacities; for convex capacities, all proposed definitions coincide.
Proposition 2 For any convezr v : A = A2 = A3.

Proof. We need only to show that AL D A3.

It is well known® that any convex capacity has the following representation:
v (E) = minyeg 7, (E) for all E € 2°.

Suppose that A ¢ Al, i.e. that for some p1,p3 € R : 7, (A) < 7p, (A). Since v (4) <
7y (A) and v (A€) < 1—m7,, (A) by the representation, v (A)+v (A¢) < 1, and thus A ¢ A3.
|

5. IMPLICATIONS

Unambiguous events turn out both to have a surprising amount of structure themselves,

and entail surprisingly strong restrictions on the capacity that hosts them.
Theorem 2 For any capacity v, Al is an algebra.

L and let

v

Proof. We need to show that A is intersection-closed. Thus, take A,B € A
B:={ANB,ANB° A°NB,A°N B} .

6See for example Chateauneuf-Jaffray (1989).
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Since we know that, for all p € R, 7, (4) = v (A) and 7, (B) = v (B), we have

T, (ANB°) = v(A) —7,(ANDB),
m,(A°NB) = v(B)—-m,(ANB), (1)

T, (A°NB°) = 1+7,(ANB)—v(A) —v(B).

We need to show that 7, (AN B) is independent of p.

Consider p, p’ such that p is a neighbour of p’. From the definitional property of an RDPA
it follows that 7, (E) = 7y (E) for at least two E' € B. However, in view of (1), this implies
that the rank-dependent probability of all four events in B stays the same, and in particular,
that 7,(ANB) =7, (ANB).

Now take arbitrary p,p’ € R . It is clear that there always exist a sequence of rank-
ings {p;},<), such that py = p,pr = p" and p;Npji1 for all j < k. Since m,, (AN B) =
7,1 (AN B) for all j from the above, one obtains 7, (AN B) = 7, (AN B) as desired. W

For convex capacities, theorem 2 has a particularly striking consequence: if a convex

capacity has additive marginals on a product space, it must be a probability measure.

Corollary 1 Suppose that v is a convex capacity on S = S1 x Sy that is additive on each

marginal algebra A; = {S_; x A| A€ ZSi} : then v itself is additive.

Proof. Under the assumptions on v, A2 O A; U As. By proposition 2, A3 = Al. Since by
theorem 2, Al is an algebra, in fact Al = S. The claim follows, since v is additive on AL.

Theorem 2 is not all; in addition, a capacity is always “additively separable” across its
unambiguous events.

For a capacity v, define the set of its “separating events”
AL ={Ae2”|v(B)=v(BNA) +v(BNA°) forall B€2°}.

Theorem 3 For any capacity v, Al = A4,

15



Proof.

Al C AL . Take any A € Al and B € 2. Let p be any ranking such that, for all
s1€ANDB,ss € ANBand sz € B°:p(s1) < p(s2) <p(s3).

By construction,

7, (B) =v(B).
Since p =4 pa by definition, one obtains from lemma 2,
Tp (B) = T4 (B).
From the interdefinition of m and v and the definition of p4, one obtains
T, (B)=v(ANDB)+[v(AU(A°NDB)) —v(4)].
Finally, since AL C A2,
v(AU(A°UB))—v(A) =v(A°NB).
These four equalities imply v (B) =v (AN B) +v (A°N B), as desired. O

AL D AL
Take any A € Aj, and arbitrary p,p’ € R ; we have to show that 7, (4) = 7, (A).
The key is the following lemma.

Lemma 3 If A€ A}, then, forallp e R : 7p)=mp,.

Proof of lemma.
For any j < n, let S;’ ={seS|p(s)<j}.
Fix any j . By definition, 7, (S;) =v (ij.)) )
Since A € A},
1/(5’5) =v (S;’HA) +v (Sj?mAC) ,
as well as

v(syna) =v((syna)ua) v,

16



and thus
v(s5) =v(stna)+v((snas)ua) —v(a).
In turn, the right-hand side of this equation is easily verified to be equal to 7(,,) (S;-’ ) .
We thus have 7, (S;) =Tp, (5’;) for all j < n, and therefore also 7, = m,, . O

The claim of the theorem is now easily established.
We have 7, (A) = 7,, (A) (by lemma 3),

= v (A) (by definition),

=7y, , (A) (by definition),

=7y (A) (by lemma 3 again). W

Remark: Zhang (1997) shows that

A=A :={Ae€25|v(AUB)=v (A1) +v(B) forall Ay C Aand B C A°},

considers (and rejects) A5 as a possible definition of unambiguous events, and gives a
decision-theoretic (almost-) characterization. The intuitive content of A% or A3 as capturing
the events to which the agent assigns an unambiguous subjective probability is however
not clear. And indeed, as pointed out in section 6, the decision-theoretic definitions of

unambiguous events underlying Al and A% diverge outside the CEU model.

A successful definition of “revealed unambiguous belief” makes it possible to express for-
mally the notion that an agent’s beliefs incorporate a set of “given” probabilities (“set of
probabilistic constraints”), which may be thought of as information about objective prob-
abilities. In the following definition, C describes the set of events about whose probability

the agent is informed of.

Definition 6 A probabilistic constraint set is a pair (C, ¢) , where C C 2 and ¢ : C — [0, 1]
s probabilistically coherent on C.

The capacity v is A*—consistent with (C,¢) if

i) v(A)=¢(A) forall AcC , and

ii) Ay D C .
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Theorems 2 and 3 yield as a corollary a characterization of the class of capacities consistent
with a given set of probabilistic constraints.
For C € 2%, let C* denote the algebra generated by C, C* := N{B D C | Bis an algebra},
and let F* denote the atoms of that algebra which form a partition of S, F* := {F € C* |[forno G C F : G € (

Corollary 2 v is AlL—consistent with the constraints (C, ) if and only if
i) forall AeC ,v(A)=¢(A), and

i) for all A€ 25 :v(A) =Y v(ANF).
FeF*

Proof. “If”: By theorem 3 and ii), AL 2 C* D C ; hence v is AL —consistent with (C, ¢)
by 1).

”Only if”: i) is obvious.

ii) Let 7* = {F}};) and define B, :igj F,. By theorem 2, AL O F*. Since Bj;1 =
Bj N Fy, it follows from theorem 3 that

v(ANB;)=v(ANF;)+v(ANBjy) forall j:1<j<k—1.

Repeated substitutions yield immediately v (A) =v(ANDB) =) v(ANF;). M
J<k

Corollary 2 suggests a natural definition of the independent product of a capacity and a
probability measure, for what it is worth”. Suppose that S = S; xS, Ay = {51 xA|Ae€ 252} .
Let a probability ¢2 on Ay be given, as well as a “marginal capacity” v; on A; analogously

defined.

Proposition 3 There exists a unique product capacity v (=: v1 @ ¢2) such that
i) v is AL—consistent with (As, ¢9) , and
i) for all A€ S1,B€ Sy :v(Ax B)=v(AXS2)-¢(S1 xB).

Proof. Uniqueness: For s € Sy, let Es = {t € S1|(t,s) € E}. By corollary 2 and i)

v(E)= Z:g v (Es x {s}), hence by ii), v (E) is uniquely determined by
s€59

v(E) =) vi(Esx S5 ¢2(S1x {s}). (2)

s€So

"In view of the epistemic restrictedness of the capacity-framework suggested in section 6.
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Existence: v defined by (2) clearly satisfies i) and ii). W

The charm of proposition 3 lies in the fact that the consistency requirement i) uniquely
singles out the product capacity v1 ® ¢2 which has been considered (and compared to
alternative definitions) by Hendon et al. (1995) and Ghirardato (1997), and also appears
in Eichberger-Kelsey (1996). Being a consequence of theorem 3, it critically hinges on the

strong definition of unambiguous events AL.
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6. DISCUSSION

The results of section 5 indicate that a capacity-representation of preferences and prob-
abilistic constraints on beliefs do not live together very harmoniously; in many situations,
one will have to give. Which of the two will depend on one’s judgement about which is
more fundamental. To us, it seems evident that probabilistic constraints are the more fun-
damental notion; indeed, it seems hard to even imagine what kind of argument might be
adduced that could render probabilistic constraints defeasible.

This judgment is confirmed by the fact that it takes very little to obtain consistency
with probabilistic constraints on preferences and beliefs in a satisfactory way. In particu-
lar, consistency can be achieved in the MMEU model in which capacities are replaced by
closed convex sets of probabilities I, and Choquet integration by “maximin integration”
[ dll :zgrneilr% [ zdm .

In the MMEU-model, an event A is naturally defined as IT-unambiguous if 7(A4) = 7'(A)
for all w, 7’ € II ; note that this definition coincides with the one given for capacities
whenever the two integration-functionals coincide ( i.e. for convex capacities v and their
core, cf. proposition 2). Under this definition, it can be shown that the preference-based
characterization of unambiguous events in the manner of theorem 1 is preserved, while none
of the adverse consequences are entailed.

The latter can be verified by reconsidering example 3. In the MMEU model (but not
in the CEU model, as shown above), the specified constraints are consistent with “com-
plete ignorance” with respect to the missing information, i.e.. with setting [ Liw,pydIl =

J L{y gydIT = 0. This is uniquely achieved by the set of priors ITI* = {7 € AY | 7 ({W,Y}) =7 {W, R}) = 3}

: note that IT* is the core of the non-convex capacity v* defined in example 3.2 Tt is eas-
ily verified that the set of II*-unambiguous events is exactly the A-system C. Note also
that the analogue to the problematic separability condition for unambiguous events as

in theorem 3 is not entailed; for instance, for A = {W,Y} and B = {W, R}, we have

8Since the capacity v* is non-convex, integration with respect to II* and integration with respect to

v* differ!
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[ 1pdIl* = % # 0= [ 1pnadIl* + [ 1pnacdIl*, while A is IT*-unambiguous.

If Al is accepted as the correct definition of unambiguous events in the CEU model
(for instance on the basis of its equivalence with the class of »=,-unambiguous events),
theorems 2 and 3 are naturally read as describing epistemic presuppositions of the CEU
model. In particular, for the CEU-model to be applicable, the decision maker’s probabilistic
beliefs must range over an algebra, possibly the trivial one {0, S}. — It may seem hard to
imagine how capacities could possibly be epistemically restrictive, since their definition
seems to involve only trivial assumptions (essentially monotonicity). Such an intuition
forgets, however, that capacities acquire decision-theoretic meaning only as parameters of
Choquet integrals « — [axdv , a point argued extensively in Sarin-Wakker (1995). The
class of Choquet integrals, as well as the class of preference orders it serves to represent, is

characterized by non-trivial properties which a priori might well be restrictive.
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APPENDIX

Proof of Fact 2.

By complexifying example 1, this can be shown with the help of the following lemma.

Lemma 4 Suppose A C 2° has the following three properties:
i)he A,
i) A € A implies A°€ A,
iii) A,B € A\{0} and AN B =0 imply B = A°.
Suppose also that q : A — [0,1] satisfies, for all A € A:
i)q(0) =0
ii) g(A) >0 if A#0D, and
iii) q (A) +q (A°) = 1.
Then A is a A-system, and q can be extended to a capacity v such that A2 = A.

Proof of lemma.

It is straightforward to verify that A is a A-system. Define v on 2% by v (A) = sup{q(F) | E € A, E C A};
following Zhang (1997), v may be called the “inner measure” of gq. The set-function v is
evidently a well-defined capacity; it has the following two properties:

i) Ae Aand B C A (strictly) implies v (B) = 0.

il) Ac Aand AC B C Simply v(B) =q(4).

Verification: i) The assumptions imply A¢ € A, hence, for no E C B, E € A.

ii) Similarly, the assumptions imply: if E C B and FE € A then E = A.

Consider A € A and B disjoint from A.

If B= A°, then v (AU B) = v (A) + v (B) by assumption ii) on q.

If BC A% then v (AUB) =v(A) =v(A) 4+ v (B) by properties i) and ii) of v.

This shows that A C A2

Consider now A ¢ A. By the assumptions on .4, at most one of {A, A°} contains some
EecA

Hence by properties i) and ii) of v, and assumption ii) on ¢ : v (A) + v (A°) < 1, which
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shows that A2 C A. O

Consider now A and g given by the following table, letting S =T x T with T' = {a, b, c} .

Ac A q(A)
{a,b} xT a
{c} xT e
T x {a,b} 6]
T x {c} 1-p
{b,c} x {b,c} Y
({a} x T)U(T x {a}) | 1—~
0 0
TxT 1

A is easily checked to satisfy the assumptions of the lemma; ¢ satisfies the assumptions
as well whenever a, 3,7 € (0,1) . Let v denote the inner measure induced by A and g. Then
v is probabilistically incoherent on A2 = A whenever o + 3+~ < 1.

This is seen as follows. Suppose ¢ (= v on A) has an additive extension p on 25,

Thenp({(¢,0)}) =2 1-p({a,b} x T) —p(T x {a,b}) = 1—a—f, but also p ({(¢, c)}) <,
which implies 1 <a+ 06+~ N

23



[9]

[10]

[11]

[12]

REFERENCES

Chateauneuf, A. and J.-Y. Jaffray (1989), “Some Characterizations of Lower Probabilities
and Other Monotone Capacities Through the Use of Mébius Inversion”, Mathematical
Social Sciences 17, 263-283.

Choquet, G. (1953): “Theory of Capacities”, Ann. Instit. Fourier (Grenoble) 5, 131-295.

Dempster, A. (1967), “Upper and Lower Probabilities Induced by a Multi-Valued Mapping”,
Annals of Mathematical Statistics 38, 325-339.

Eichberger, J. and D. Kelsey (1996): “Uncertainty-Aversion and Preference for Randomi-
sation”, Journal of Economic Theory 71, 31-43.

Epstein, L. and J.-K. Zhang (1996): “Beliefs and Capacities”, mimeo, University of Toronto.

Ghirardato, P. (1996): “Coping with Ignorance: Unforeseen Contingencies and Non-

Additive Uncertainty”, mimeo, Caltech.

Ghirardato, P. (1997): “On Independence with Non-Additive Measures, with a Fubini The-

orem”, forthcoming, Journal of Economic Theory.

Gilboa, I. and D. Schmeidler (1989): “Maxmin Expected Utility with a Non-Unique Prior”,
Journal of Mathematical Economics 18, 141-153.

Haller, H. (1995): “Non-Additive Beliefs in Solvable Games”, mimeo, University of Virginia.

Hendon, E. , H.J. Jacobsen, B. Sloth and T. Tranaes (1995), “The Product of Capacities

and Lower Probabilities”, mimeo, University of Copenhagen.

Morris, S. (1995): “Alternative Notions of Belief”, forthcoming in: L. Gerard-Varet et al.

(eds.): Epistemic Logic and the Theory of Games and Decisions.

Mukerjee, S. (1995): “Understanding the Nonadditive Probability Decision Model”, mimeo,

forthcoming in Economic Theory.

24



[16]

[17]

[18]

Nehring, K. (1991): A Theory of Rational Decision with Vague Beliefs. Ph.D. dissertation,

Harvard University.

Nehring, K. (1994): “On the Interpretation of Sarin and Wakker’s ’A Simple Axiomatization
of Nonadditive Expected Utility Theory”’, Fconometrica 62, 935-938.

Sarin, R. and P. Wakker (1992): “A Simple Axiomatization of Nonadditive Expected Utility
Theory”, Econometrica 60, 1255-1272.

Sarin, R. and P. Wakker (1995): “On the Interpretation of Likelihood in Choquet Expected
Utility”, mimeo, UCLA and University of Leiden.

Savage, L.J. (1954). The Foundations of Statistics. New York: Wiley. Second edition 1972,

Dover.

Schmeidler, D. (1989): “Subjective Probability and Expected Utility without Additivity”,
Econometrica 57, 571-587.

Shafer, G. (1976). A Mathematical Theory of Evidence, Princeton: Princeton U.P.

Zhang, J.-K. (1997): “Subjective Ambiguity, Probability and Capacity”, mimeo, University

of Toronto.

25



