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PREFERENCE FOR FLEXIBILITY IN A SAVAGE FRAMEWORK

By Kraus NEHRING!

We study preferences over Savage acts that map states to opportunity sets and satisfy
the Savage axioms. Preferences over opportunity sets may exhibit a preference for flexibility
due to an implicit uncertainty about future preferences reflecting anticipated unforeseen
contingencies. The main result of this paper characterizes maximization of the expected
indirect utility in terms of an “Indirect Stochastic Dominance” axiom that expresses a
preference for “more opportunities in expectation.”

The key technical tool of the paper, a version of Mdbius inversion, has been imported
from the theory of nonadditive belief functions; it allows an alternative representation
using Choquet integration, and yields a simple proof of Kreps’ (1979) classic result.

KEYwoORDS: Dynamic decision making, expected utility, unforeseen contingencies,
opportunity set, option value, Mdbius inverse.

1. INTRODUCTION

FLEXIA PLANS TO UNDERTAKE a plane trip; she has to decide whether to
purchase an advance-reservation ticket now at a price p, or to wait until right
before her intended date of departure and then to decide between staying home
and purchasing a ticket at a higher price g. Flexia’s present choice can be
thought of as one among opportunity sets, here {fly @ p, stay @ p} and {fly @ g,
stay @ 0}, from which her future choice is then made.

Flexia has fairly common present preferences over opportunity sets; if re-
quired to make a final choice now among basic alternatives (singleton opportu-
nity sets), she would most prefer to purchase a ticket in advance ({fly @ p} >
{stay @0}). On the other hand, if possible, she would rather “wait-and-see”
({fly @ p, stay @ p} < {fly @ g, stay @ 0}). Note that these preferences are not
compatible with a ranking of opportunity sets according to their indirect utility
(i.e. by ranking the sets as equivalent to their currently best element)?. They are
naturally explained, however, as due to an uncertainty about her own future
preferences between making the trip and staying at home.

Such preference for flexibility received its first axiomatic study in a classic paper
by Kreps (1979) which characterized the class of preferences that rank opportu-
nity sets in terms of their expected indirect utility (EIU). Let £ denote a space of
implicit states w describing future preferences, v, the utility function in the

'1 would like to thank Paolo Ghirardato, Bart Lipman, Louis Makowski, and Clemens Puppe for
very valuable comments, as well as audiences at Duke, Rochester, Toronto, Stanford, FUR VII in
Mons, and ESEM 97 in Toulouse for helpful responses to earlier drafts of this paper. I am also very
grateful to the editor and three anonymous referees whose unusually spirited and constructive
criticisms improved the paper a lot. I appreciate particularly that referee C kept his humor in the
face of various “Hegelian,” “postmodern,” and “aerobic” (sic!) challenges posed by the first version.

2Assuming greater wealth to be preferred, of course.
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implicit state o with subjective probability A, and x a basic alternative; the
states w € (2 are implicit in that they are part of the representation, not of the
set-up. Then the expected indirect utility of the opportunity set A can be
written as u(A)=X, oA, max, . 0,(x). Kreps showed that the implications
of EIU maximization are surprisingly weak; in particular, a preference relation
over opportunity sets has an EIU representation whenever it is strictly mono-
tone in the sense that strictly larger opportunity sets are always strictly pre-
ferred.

The assumption that present choices determine future opportunity sets deter-
ministically is very restrictive; for instance, if Flexia decides to wait, realistically
she will need to reckon with the risk that seats may no longer be available later.
The present paper characterizes EIU maximization in such more general situa-
tions in which the agent may be uncertain about the opportunity sets she is
going to face. In formal terms, we will study preferences over Savage acts f
(“opportunity acts”) that map explicit states 6 € @ to opportunity sets 4 € =
2%\ @ of alternatives x € X and that satisfy all Savage axioms. Preference for
flexibility corresponds to a violation of the following indirect-utility property:

For all sets (constant acts) A, BE€«: A > B implies A >A UB.

A particularly interesting interpretation of the distinction between explicit
and implicit states has been given by Kreps (1992), where the explicit state-space
models the space of foreseen contingencies determining the class of thought
experiments relevant to the decision-maker’s preference construction. Violation
of a conditional version of the TU property® is viewed as reflecting anticipated
unforeseen contingencies; for example, Flexia may explain her preference for
flexibility by the expectation that “quite possibly something will interfere with
my travel plans,” without having a clear idea about specifically what is likely to
interfere.

One may wonder whether a notion of maximizing expected (indirect) utility
with respect to anticipated unforeseen contingencies makes any sense; after all,
by definition, the decision-maker is supposed not to have/use an explicit
representation of these, and can therefore neither assign subjective probabilities
to them (in her mind), nor—from a more sophisticated revealed-preference
perspective—can she be guided by the sure-thing principle applied to acts that
are a function of the unforeseen contingencies.*

*A conditional version is relevant if preferences are allowed to be state-dependent, as in Kreps
(1992); see Section 5 for a very brief discussion of this case. If preferences are state-independent (as
assumed in this paper), the conditional and unconditional IU properties are equivalent.

‘A conceptualization of anticipated unforeseen contingencies in terms of a set of implicit
decision-relevant states with associated “implicit” subjective probabilities and expected utilities
stands in interesting contrast with approaches in which “unforeseenness” is identified with ignorance
of some kind, as in Ghirardato (1996) and Mukerjee (1997); for recent epistemic work on the related
notion of awareness, see Modica-Rustichini (1994), and Dekel-Lipman-Rustichini (1996).
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The question is therefore whether intrinsically appealing® axioms on prefer-
ences over opportunity acts (which are functions of explicit states only) can be
formulated that yield an EIU representation with respect to implicit states. We
propose an axiom called “Indirect Stochastic Dominance” which captures the
notion that having “more opportunities in expectation” is better.® Combined
with the Savage axioms, this yields the main result of the paper, a representation
in which an act f is evaluated according to [(X,c nA, max, ¢ 0, (X)) dp,
where u is the agents’ subjective probability measure over the explicit state-space
0.

In contrast to Kreps’ (1979) result for a deterministic (and thus effectively
ordinal) setting, the additive representation with respect to implicit states has
substance here; indeed, it is not difficult to construct examples in which the
decision-maker is uncertainty-averse in the sense of Gilboa-Schmeidler (1989)
with respect to implicit states and fails to satisfy ISD. We note that in Kreps
(1992), which considers preferences over opportunity acts also, the representa-
tion is merely monotone rather than additive in implicit state utilities. In
addition to the cited contributions by Kreps, two other especially relevant
references are Koopmans (1965) who suggested an EIU representation without
axioms, as well as Jones-Ostroy (1984) who relate the value of flexibility to the
amount of information to be received.

Besides extending the analysis of preference for flexibility to a stochastic
setting, the second main goal of the paper is to introduce a new technical tool,
(conjugate) Mobius inversion, which allows full and efficient use of the linear
structure of the EIU representation and unifies the mathematical analysis.
Beyond playing a key role in the demonstration of the main result, it allows a
simpler and more transparent proof of Kreps’ (1979) classical theorem. It also
yields an explicit characterization of the class of EIU-maximizing utility func-
tions over opportunity sets. In addition, the use of Mdbius inversion establishes
an interesting connection to the literature on nonadditive probability represen-
tations from which it has in fact been imported; in particular, we show in Section
3 that EIU maximization can alternatively be viewed as Choquet integration
with respect to a “plausibility function” (conjugate belief function) in the sense
of Dempster-Shafer theory.”

The remainder of this paper is organized as follows: Section 2 introduces a
Savage framework with opportunity acts, presents the key axiom (Indirect
Stochastic Dominance), and states the main representation result (Theorem 2).
Conjugate Mobius inversion is introduced in Section 3. Theorem 2 is proved,
and an alternative representation in terms of Choquet integration is given.
.Section 4 revisits Kreps (1979) and gives a direct and intuitive proof of his result

5In contrast to axioms that characterize EIU-maximization in a mathematical sense, but cannot
themselves be understood as primitive conditions.

®As such, it is genuinely an axiom of preference for flexibility as it excludes Ulyssean motivations
for reducing one’s future opportunities for the sake of precommitment; the classical reference on
the latter is Strotz (1955).

’See Dempster (1967) and Shafer (1976).
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based on conjugate Mobius inversion. The paper concludes with some remarks
on the possibility and interest of allowing for state-dependent preferences, and
on the (non-)uniqueness of the representation; the reader is referred to Nehring
(1996) for details. All remaining proofs are collected in the Appendix.

2. PREFERENCE FOR FLEXIBILITY IN A SAVAGE FRAMEWORK

Three basic types of explicit uncertainty can be distinguished in a context of
two-stage decision-making: the agent may be uncertain as to which opportunity
set results from a particular present choice (e.g., in Flexia’s case, the availability
of a ticket if she does not buy one now), the agent may receive information
about the comparative value of alternative final choices (e.g., if Flexia is worried
about the health of her child, her final decision may depend on his body
temperature), and thirdly the final choice itself may be one under uncertainty
(e.g., at the time of her final decision, Flexia may still not know whether the
child will fall seriously ill). In this paper, we will focus on uncertainty about the
future opportunity set. Uncertainty of the second kind, which is associated with
state-dependent preferences, is straightforwardly integrated into the analysis (cf.
the concluding remarks in Section 5). Uncertainty that is not resolved before the
final choice is not explicitly modeled here; doing so promises to be a worthwhile
and nontrivial task for future research.

After recalling the Savage framework and axioms (applied to acts that have
opportunity sets as consequences), we will introduce a novel axiom capturing
“preference for flexibility” and conclude by stating and commenting on the main
result of the paper, a representation theorem for Expected Indirect Utility
maximizing preferences. Its proof and further analysis will be deferred to the
following section, following a presentation of the key technical tool of the
analysis, conjugate Mobius inversion.

Some notation and definitions first.

X: the finite set of alternatives.

& the set of nonempty subsets of X (“opportunity sets”).

O: the space of explicit states 6.

F: the class of opportunity acts f: @ —>.

Feo"st: the subclass of constant acts, typically denoted by the constant prize.

[f,E; g, E°]: the act & such that, for 8 € O,

fo HOEE

ho = g, ifO€E"

(“fon E and g on E”).

= : a preference relation on &.
f>g g: whenever [f, E;h, E] =g, E; h, E] for some h €F (“f is weakly
preferred to g given the event E”).8

8 While =g is well-defined formally, only in the presence of Axiom 2, the sure-thing principle,
does it have a meaningful interpretation.
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E isnullif f>, g forall f,ges.
The following are the first six of Savage’s seven axioms.’

AxioM 1 (Weak Order): = is transitive and complete.

AXIOM 2 (Sure-Thing Principle): For all f,g,h,W € F,EC O: [f,E;h, E‘] >
lg,E;h,Elif and only if [ f, E; W, E] =g, E; W, E].

AxioMm 3 (State Independence): For non-null EC ©® and all f,geF°""
[f,E;h,El=[g,E;h,Elifand only if f = g.

AXIOM 4 (Comparative Probability): For all E,FC © and f,g,f',g € 5"
suchthatf>gand f' >~g": [f,E; g, E1=f,F; g, Flifandonly if [, E; g, E‘]
=11, F; g, F]

Axiom 5 (Nontriviality): There exist f, g €F°"": f>g.

AxioM 6 (Archimedean): For all f,g €F such that f>g and all h € 7",
there exists a finite partition % of © such that, for all H €%
@ [hH;f,H]>g,
(i) f>I[h,H;g, HC]

With u denoting a finitely additive measure on 29, define, for any finitely-
ranged function x: ® - R,

fx(@)d,u= Y eu({0€ 0x(0) = £)).

£ex(0)

THEOREM 1 (Savage): The preference relation > on F satisfies Axioms 1
through 6 if and only if there exists a finitely additive, convex-ranged' probability
measure w: 2° > R and a nonconstant utility function u such that

f=g ifandonly if fu(f(@))d,ukfu(g(@))d,u,, forallf,g €.

The key ingredient to the axiom capturing preference for flexibility is an
“indirect stochastic dominance relation” which relies on the comparative proba-
bility relation revealed by the decision-maker’s preferences. Thus, let > be the
more-likely-than relation on 2° defined by

E > F if, for any constant acts f, g such that
fg: lfE;g, E)=f,F;8,F].

°The last, P7, is not needed, since all opportunity acts are finitely-ranged due to the maintained
assumption of a finite domain of alternatives X.

1 is said to be convex-ranged if, for all E C @ and all p: 0 < p < 1, there exists F C E such that
w(F) = pu(E).
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Note that by Axiom 4, “any” can be replaced by “all” in the definition of >,
and that E > F if and only if u(E) > u(F).

DEerINITION 1: The opportunity act f indirectly stochastically dominates g
with respect to the weak order R on X (“f > g”) if and only if, for all x € X:

{6 0|f(0) n{yeX|yRx} T} = {6 € Olg(6) N {ly € X|yRx} = T}.

f indirectly stochastically dominates g (“f1>g”) if it indirectly stochastically
dominates g with respect to every weak order R on X.

The opportunity act f indirectly stochastically dominates g, if, for any
hypothetical weak order over alternatives R, it is subjectively at least as likely to
reach any given level set of R through the opportunity sets resulting from f
than through those resulting from g.!! The Indirect Stochastic Dominance
relation restricted to constant acts coincides with set-inclusion; in a stochastic
setting, it is however much richer in content.

ExampLE 1: Let X ={x,y,z}, E be any event that is > -equally likely to its
complement (hence with subjective probability w(E) = 3), and define opportu-
nity acts f=[{x, y}, E;{x, z}, E°] and g=[{x}, E;{x,y, z}, E]. Then fg, but
not g f.

This is easily verified. If x is a best alternative with respect to R, it is available
with subjective probability one under f and g, and thus f > g as well as g > f.
If, on the other hand, x is not a best alternative with respect to R, the? R-best
alternative is available with probability one half under each. Under f, the
at-least-second-best alternative is always available, and thus f >.8 again. How-

ever, if x is worst with respect to R, with probability one half not even the
second-best option is available under g, and thus not g, f for such R. It
follows that fr> g, but not gi>f.

Axiom 7 (ISD): For all f,g €F: f=g whenever f zndtrectly stochastzcally
dominates g.

ISD can also be expressed purely in preference terms: if any bet on attaining
under f any level set of any weak order, i.e., any bet on an event of the form
{6€ O[f(0) N{y € X|yRx} #+ I}, is preferred to the corresponding bet based on
g, then f itself is weakly preferred to g. Note the Savage axioms themselves
imply the restriction of ISD to single-valued acts which is ordinary stochastic
dominance.

"In other words, f indirectly stochastically dominates g if, given any (ordinal) indirect utility
function u, the probability distribution of indirect utilities wo(uo f)™! induced by f first-order
stochastically dominates (in the ordinary sense) the analogously defined probability distribution
o (uog) ! induced by g.

Breaklng ties arbitrarily throughout.
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To capture formally uncertainty about future tastes in the intended represen-
tation, let 2 denote a (finite) set of preference-determining contingencies
with associated utility-function v, and let A € A® denote a probability distribu-
tion over the implicit state space (2. The preference relation > is “EIU-rational-
izable” if the ex-ante utility of an opportunity set u(S) can be accounted for as
an expectation of maximally achievable future utility, allowing for uncertainty of
future preferences, i.e., if u(S) can be written as ©_ . 5 A, max, ¢ U, (x).

DErFINITION 2: The preference relation = is ElU-rationalizable if there exists
a finitely additive, convex-ranged probability measure u, a finite set (2, a
probability-measure A on (2 and utility-functions {v,}, ., such that, for all
f,geF

fzgc»f( ). A, max vw(x)) d,uzf( Y A, max uw(x)) du.

wen XEf(0) wen *<g(0)

REMARK 1: In order to preserve generality, we have allowed in this definition
the implicit state-space (2 to be arbitrary (finite), herein following Kreps (1979).
It is debatable whether this is really meaningful; one may want to restrict
attention to a canonical space of states that is logically constructed from the
data, i.e., ultimately from the universe of alternatives X. A natural candidate for
such a canonical state-space is the set of all weak orders on X. However, fixing
{2 in this way is not enough to ensure uniqueness of the representation.

REMARK 2: The representation entails that the distributions of future prefer-
ences and opportunity sets be subjectively independent; this strong assumption
corresponds to the state-independence Axioms 3 and 4 and is substantially
relaxed in Nehring (1996).

THEOREM 2: A nontrivial preference relation > over opportunity acts satisfies
Axioms 1-4, 6 as well as ISD if and only if it is EIU-rationalizable.

REMARK 1: The richness of the state-space implied by Axiom 6 and character-
istic of the Savage-framework is critical to the validity of the result. The result
would cease to hold with additively separable preferences and a finite state
space as in Kreps (1992); it is easily verified, for instance, that Theorem 2 would
become false if @ consisted of only one state, for then ISD coincides with
monotonicity with respect to set inclusion which is not enough according to
Theorem 3 below.

REMARK 2: Viewed as a statement about the induced preference-relation on
probability-distributions over opportunity sets > *,"* Theorem 2 belongs to a
family of decision-theoretic results that obtain an additively separable represen-

B s formally defined in the proof of Theorem 2 in Section 3.
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tation by appropriately augmenting the von Neumann-Morgenstern axioms.
These include in particular Harsanyi’s (1955) utilitarian representation theorem,
as well as Anscombe-Aumann’s (1963) characterization of SEU maximization.
The role of ISD (induced on = *) is played by a Pareto condition in the former
and by an (implicit, see Kreps (1988, p. 107)) “only marginals matter” condition
in the latter. The analogy to Harsanyi’s theorem is particularly close, in that ISD
is a monotonicity condition analogous to the Pareto condition there. Jaffray’s
(1989) mixture-space approach to belief-functions, by contrast, enhances the von
Neumann-Morgenstern axioms in a rather different direction.

REMARK 3: Recent work by Gilboa-Schmeidler (1995) and Marinacci (1996)
on Mébius inversion'* in infinite settings allow generalization of Theorem 2 to
infinite sets of alternatives X roughly as follows. Let an opportunity act be a
mapping from @ to the nonempty sets of some algebra of opportunity sets;
require ISD of all simple acts, and add Savage’s Axiom P7. Then Theorem 2
generalizes, with EIU-rationalizability defined in terms of a probability measure
on an appropriately defined measure-space of weak orders.

3. THE SIMPLE ALGEBRA OF EXPECTED INDIRECT UTILITY

In this section, the key technical tool of the analysis, (conjugate) MGbius
inversion, is presented. Its relevance is due to the observation (Proposition 1)
that the structure of EIU functions is closely related to that of “plausibility
functions” (conjugate belief functions) in the literature on nonprobabilistic
belief representations, in which Mobius inversion (originally due to Shapley
(1953) and, in greater generality, to Rota (1964)) occupies a central place.”
Conjugate Mobius inversion is employed in this section to characterize the class
of utility functions on opportunity sets with an EIU representation, to prove
Theorem 2, and to obtain a representation of EIU-rationalizable preferences in
terms of a Choquet integral.

Let &% =2X N (@ U{X}). #S is the cardinality of a set S, with #X =n, and
¢ denotes the strict subset relation. 1: & — R is the constant function equal to
1, Ly & — R is the indicator-function of the singleton {S}. Functions from .2/"to
R will often be viewed as vectors in R¥. A% denotes the probability simplex in
R”.

A function u: & — R is an indirect utility (IU) function if it has the form
u(A) =max, . 4u({x}) for all A €. A function u: & — R is an expected indirect
utility (EIU) function if it is a convex combination of IU-functions: u(A) =
Yocar (A =X, oA, max, . o, ({x}) for all 4 €, for some finite collec-
tion of IU-functions {v,}, , and some set of coefficients {A,}, , such that
A,=0forall we 2 and X, ,A, = 1. Thus, preferences over opportunity acts

¢t Section 3.
The classical references on belief-functions are Dempster (1967) and Shafer (1976); for a recent
thorough study of Mobius inversion, the key technical tool, see Chateauneuf-Jaffray (1989).
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are EIU-rationalizable if and only if they have a Savage representation in terms
of an EIU function u. An IU function is dichotomous if it takes the values 0 and
1 only, ie., if u(«)c{0,1}. It is easily verified that a function u: &/ >R is a
dichotomous IU function if and only if it is simple, i.e., if u =y, for some
§ € 2%, with x4: . — R defined by

(1 fANS=0,
Xs(A)‘{o it ANS =0, for Aew.

The following observation characterizes IU and EIU functions as equivalent
to certain linear combinations of simple functions.

ProPOSITION 1: (1) u is an IU-function if and only if u=Y_  Agxs, for
A€ RY such that Ay >0 for all S +X, and such that Ag>0 and A; >0 imply
ScTorS2T.

(i) u is an EIU-function if and only if u =Yg ,As Xs» for A € RY such that
Ag=0 forall S +X.

ExXAMPLE 2: Let X ={1,2,3}, and let u be the IU-function defined by u(S) =
max . . ¢x°. Then u = x; 53+ 3x2.3 + SXa)

Mathematically, the key is the observation that the set of simple functions is a
linear basis of the space R¥. How simple functions combine (in particular to
yield EIU functions) is described by the “conjugate Mébius operator” ¥: RY —
R which maps vectors of “weights” (A4)g. ,, on the simple functions y; to
set-functions u. ¥ is defined by A = u = L, Ag xs, and thus u(A) = V(A)(A)
=Ygy searghs, for A €. Setting u() = 0 as a matter of convention, ¥ is
conjugate to the standard “Mébius operator” ®: R X {0} » RY X {0}: A—1
with /(A4) = X ,x. g 4As.'® Note that u and [ are related by the conjugation
relations 1(A) = u(X) —u(A°) and u(A) =I(X) —I(A°), for A € 2%; this rela-
tionship allows us to translate results on the standard Mdbius operator into
results on its conjugate in a straightforward manner.

Basic is the following lemma.

LEMMA 1: The conjugate Mobius operator W: RY — R is a bijective linear map.
Its inverse W' is given by

vlW(A) = Y (=DFITNES) for Aew.
Se2¥:5cA

ExampLE 3: Let X ={x,y, z}, and let u be an EIU-function. Lemma 1 yields
T w{y,z}) = —ul{x,y, z}) + ul{x, z}) + u({x, y}) —u({x}).

Combined with Proposition 1, the lemma allows a straightforward characteri-
zation of EIU-functions in terms of 2" — 2 linear inequalities.

161(4) may be interpreted as the utility-loss from lacking the set of alternatives A.
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PROPOSITION 2: u is an EIU function if and only if ¥ (u)(A)>0 for all
A ew*.

In Example 3, applying Proposition 2 to the set A = {y, z} yields
u{x, zP) +ul{x, yP) zul{x, y, z}) + u({x}).

Note that this inequality is the utility-analogue to the preference-implication of
ISD in Example 1. Indeed, it is clear from Theorem 2 that the characterizing
condition of Proposition 2 must be the utility-analogue to ISD. Drawing on the
literature on belief functions, this condition can be made more intelligible by
generalizing it to the following, effectively equivalent pair of conditions.

DErFINITION 3: (D) u: & — R is monotone if ACB implies u(A) <u(B)
VA, B €.

(i) u: & = R is totally submodular if, for any finite collection {A4,}, c x in &
such that N, c x4, # T,

u( nAk)s Y (—1)#J+lu( UAk).

keK J.JCK,J+QD kel

The conjunction of monotonicity and total submodularity differs from “in-
finite monotonicity” in the sense of Choquet (1953) in two ways: infinite
monotonicity would result if in the definition of total submodularity the inequal-
ity were reversed and if the nonempty-intersection clause were dropped. The
former difference is due to the conjugate definition of the relevant operator, the
latter to the absence of the empty set from the domain of u. The following is an
adaptation of standard results.

PROPOSITION 3: u is an EIU function if and only if it is monotone and totally
submodular.

Total submodularity is understood most easily by considering the case of
#K = 2, where it specializes to the following standard “submodularity” condi-
tion:

u(ANB)+u(AUB) <u(A) +u(B)
VA, B € such that AN B+,
or equivalently:

u(AUB) —u(A)>u(A VB UC)-u(4UC) VA,B,C ex.

In this version, submodularity says that the incremental value of adding some set
to a given set of alternatives (the set B’ to A') never increases as other
alternatives (the set C') are added. Submodularity implies that opportunity
subsets are substitutes in terms of flexibility value.
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(Total) submodularity can be translated into a characterization of the risk
attitudes towards opportunity acts implied by EIU maximization. Submodularity
in particular translates into the following condition of opportunity risk-aversion
which generalizes Example 1:

For all A", B",C" €« such that A" ;B” UC" and B"NC"=(, and any f, g €F such
that go f' =310 gy + 31 oy and po g™ =31 + 31 e procry =8

Thus, losing one of the opportunity subsets B” or C” for sure (each with equal
odds) is weakly preferred to facing a fifty-percent chance of losing both B” and
C". The higher-order instances of total submodularity may also be given a
(rather more tenuous) opportunity risk-aversion interpretation.

We are now in a position to demonstrate the main result, Theorem 2; the two
lemmas to which it appeals are proved in the Appendix. A quick overview first.
We begin by deriving from the preference relation > an induced von Neu-
mann-Morgenstern ordering of probability distributions on opportunity sets = *
on A¥. Using conjugate Mdbius inversion, >* is shown to have an additive
representation of the form

p=fge Y. A pUSISNA=+T})
Aey*

> ), ,qUSISNA =2}, forall p,qeA”,
Aey*

in which the coefficient vector A denotes the conjugate Mdobius inverse of the
utility-function u from the Savage representation of >=. According to Proposi-
tion 2, u is an EIU-function if and only if A, is nonnegative for all A4 # X. The
latter is exactly what ISD delivers. Here are the details.

PrOOF OF THEOREM 2: By Savage’s representation theorem, there exists a
probability measure w and a utility function u: & — R such that

f=g if and only if fu(f(@))duzfu(g(e))du, forall f,g 4.

We need to show that u is an EIU-function if and only if = satisfies ISD.

From the convex-rangedness of u and the definition of . it follows that
wo f~1 has “full range,” i.e., that {uo f!|f€5} = A¥. Define an induced
preference relation on “opportunity lotteries” =* on A¥ by setting po f! =*
weog ! if and only if f=g, for all f,g€.%. >* has a von Neumann-Morgens-
tern representation

p=tqe Y pu(S) = Y qeu(S), forall p,qe A.
Sew Sew

Note first that p({SISNA+TN =Esc . sna20Ps = Y(pXA). The conju-
gate Mobius operator ¥ thus maps opportunity prospects p to their characteris-

tic profiles ¥( p), establishing a linear isomorphism between A¥ and the space of
characteristic profiles I' := ¥(A¥). The desired proof is given by studying the
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induced isomorphic preferences = over characteristic profiles w € I'” defined
by

T e U (x) = T (a).

Set A, = ¥ '(u)(A) for all 4 €. The expected-utility representation of > *
translates into an additive representation for the induced preference relation
>. In it, the coefficients A, describe the marginal ex-ante utility of an
incremental probability of reaching the set 4 €™, i.e., of an increase in
pSISNA + .

LEMMA 2: 7= ' if and only if T c s Am(A) 2T o d ' (A), for all
m,m el

The preference relation = is monotone if 7> ' = 7= ', The proof is
completed by showing that ISD of > translates into monotonicity of =, which
is equivalent to nonnegativity of the coefficients A, which in turn is equivalent
to u being an EIU-function in view of Proposition 1.

LEMMA 3: (i) The preference relation = is monotone if and only if = satisfies
ISD.

(ii) The preference relation = is monotone if and only if A, >0 for all
A ev*. Q.E.D.

REMARK 1: Setting 77(@) 0 by convention, standard results imply that
W(A%) x {0} = {w € R*"|& is monotone, totally submodular on 2% and (X ) =
1}."7 Thus characteristic profiles can be viewed as “plausibility functions” in the
sense of the theory of nonadditive belief-functions (Shafer (1976)); however, on
the expected-utility account given so far, a characteristic profile 7 as defined
does not express a nonadditive belief, but rather probabilistic beliefs about
events of the form {S|S N T = &} c 22",

REMARK 2: On the other hand, characteristic profiles can also profitably be
viewed as capacities with the particular structure of a plausibility function
expressing a nonadditive belief about the state-space X this yields a representa-
tion of EIU-maximization in terms of Choquet integration.’® The following
remarks are intended for readers familiar with the latter.

The idea is to redescribe an agent’s future opportunity of choosing from some
set S epistemically as ignorance about the future choice from S, an ignorance

Y 2X > Ris totally submodular on 2% if, for any finite collection {4}, < x in 2%:
77( ﬂAk)s Y (—1)#’*1W(UAk).
kek J:JCK,J#+D kel

Note that on 2% the intersection of {4}, < ¢ is allowed to be empty.
'8 This interpretation has been suggested by an anonymous referee.
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captured nonadditively by the plausibility-function yg: 2% - R, with y(A)
representing the upper probability that the future choice from § lies in the set
A; note that x; = ¥(1,). More generally, a probability distribution over oppor-
tunity sets p can be associated with the capacity W(p) over future choices. Let
A% denote the set of probability measures on X with support in S, and set
I(p) =Yg ps A5 A% the convex set of choice distributions consistent
with the opportunity lottery p. Then the capacity ¥(p) has an upper-probability
representation given by ¥( p)(E) = max{q(E)lq € II(p)}, for E €2*.

For a given future indirect utility function v,, the expected indirect utility
taken with respect to the explicit uncertainty @ generated by the act f and given
by [ max, ¢ ;40,({x}) dp can be written as a Choquet integral [.v,({x}) dv, with
v=P(peof 1), or equivalently as upper expectation max{¥ . ,g({xDv, {xDlq
€ IM(wo f~1)}).° The atypical use of an upper rather than lower expectation,
respectively of a submodular rather than a supermodular (or “convex”) capacity,
reflects an agent’s expectation that future choices will be made in line with his
current interests. One can incorporate uncertainty over future preferences by
jointly integrating over w and x with respect to a capacity defined on £ x X.?!

REMARK 3: ISD restricted to singleton-valued acts amounts to ordinary
stochastic dominance in preference terms. A stochastic-dominance like axiom,”
“Cumulative Dominance,” has been used by Sarin-Wakker (1992) to axiomatize
Choquet expected utility preferences in a Savage setup. Cumulative dominance
and ISD do quite different work, though. Cumulative dominance “calibrates”
explicitly ambiguous acts in terms of equivalent unambiguous ones and is
responsible for the rank-dependent character of the integration, while neutral to
the nature of the capacity. By contrast, ISD pertains to the implicit uncertainty
of future choice and preference, and in effect singles out a particular type of
capacity, namely, a plausibility-function as explained in Remark 2.

4. KREPS (1979) REVISITED

The analysis of Sections 2 and 3 allows us to throw new light on Kreps’ (1979)
classic analysis of preference for flexibility in a setting without explicit uncer-
tainty; in particular, we will use conjugate Mobius inversion to provide a new
and simplified proof of his main result, a characterization of EIU-rationalizable
preference orders defined over the class of opportunity sets.

Let >, be a weak order on &; in the Savage setting of Section 2, >, can be
identified with the restriction of = to the class of constant acts.

19 Using Minkowskian set-addition.
2 Equivalences of this type are well-known; see, for example, Chateauneuf-Jaffray (1989, p. 275).
2 Then the overall expected indirect utility is given by [v,({x}) 7, with T defined by

WE)= Y, Ay P(uof D{xeX|(w,x) €E) for ECOXX.

we

22gee, however, the discussion in Nehring (1994).
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DEFINITION 4: (i) =, is monotone if A 2B implies A4 =, B, for all A, B €.

(i) >, is strictly monotone if A 2 B implies 4 =, B, for all 4, B €.

(iii) =, is ordinally EIU-rationalizable if there exists an EIU function u:
& — R such that 4 >, B if and only if u(A) > u(B) for all A, B .

In view of Theorem 2, it seems natural to conjecture that ordinal EIU-ra-
tionalizability is equivalent to the restriction of indirect stochastic dominance to
constant acts which is monotonicity with respect to set inclusion. This conjecture
proves to be half-true. On the one hand, it is borne out for the class of ordinal
preferences that contain no nontrivial indifferences: any strictly monotone
ordering =, turns out to be ordinally EIU-rationalizable. Nontrivial indiffer-
ences are quite plausible, however; they occur whenever some alternative is
preferred to another at every implicit state w.” In this case, ordinal EIU-ra-
tionalizability requires additional restrictions captured by the following condi-
tion of ordinal submodularity.

DEerFINITION 5: The preference relation =, is ordinally submodular if A =,
A UB implies AUC>=; AUBUC forall A,B,Ce.

Within a Savage-framework, ordinal submodularity is implied axiomatically by
ISD, state-independence and the existence of events equally likely to their
complement. The details follow. Take any A4, B € °°"*" such that 4 >4 UB.
Let E be any event > -equally likely to its complement. State indepen-
dence (Axiom 3) implies that [A UC,E; A, E1>[AUC, E; AUB, E°]; ISD
yields [AUC,E; AUB,E]=[AUBUC,E; A, E°], whence by transitivity
[AUC,E; A,E] =[AUBUC,E; A, E°]; by state independence again, 4 U C
=AU BUC, as desired. Thus, within a Savage framework, ordinal submodular-
ity is not such a simple condition! Interestingly, but in line with its ordinal
character, in its derivation no reference has been made to the sure-thing
principle.

Kreps (1979) has shown that monotonicity and ordinal submodularity together
are sufficient to ensure EIU-rationalizability.

THEOREM 3 (Kreps): A weak order = is ordinally EIU-rationalizable if and
only if it is monotone as well as ordinally submodular.

To facilitate the discussion, we restate the result as one about ordinal utility
functions.

OSM) u(A)>u(AUB)=u(AUC)>u(AUBUC) VA,B,Cev.

THEOREM 4 (Kreps, restated): For any function u: & — R, there exists a strictly
increasing transformation : R — R such that 7 o u is an EIU function if and only if
u is monotone and satisfies OSM.

B For example, {x, y} ~ {x} if and only if v,(x)> v,(y) for all w with positive probability Ay
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A comparison of Proposition 3 and Theorem 4 suggests a proof heuristic as
follows. The former implies that the cardinal content of EIU-maximization is
given by monotonicity plus fotal submodularity, whereas the latter asserts that
the ordinal content of EIU-maximization is given by monotonicity plus ordinal
submodularity. In other words, to prove Theorem 4, one needs to show that for
any monotone and ordinally submodular function u: & — R, there exists a
strictly increasing transformation 7: R — R such that 7o U is totally submodu-
lar. Note that in view of the essentially cardinal nature of total submodularity,
one would expect its ordinal implications to be weak; the restated theorem looks
therefore not that surprising after all.

Moreover, total submodularity is a condition with concave flavor: the incre-
mental utility of an opportunity subset decreases weakly as the set to which it is
joined becomes larger. This suggests that by defining transformations 7 that
concavify u “sufficiently strongly,” one should be able to transform any ordinally
submodular utility function into a totally submodular one. The proof given in
the Appendix follows this line of argument by showing that for sufficiently
concave transformations of u, the conjugate Mdbius inverse of 7o u becomes
nonnegative. Two cases need to be considered. For “instances of strict mono-
tonicity,” i.e., for any S such that u(S¢ U {x}) > u(S°) for all x € S, the value of
the conjugate Mobius inverse ¥~ '(r o u)(S) becomes strictly positive for suffi-
ciently concaving 7. On the other hand, for “instances of indifference,” i.e., all
other S, the value of the conjugate Mobius inverse ¥~ !(7 o u)(S) is zero for any
monotone 7 and ordinally submodular u.

5. CONCLUDING REMARKS

The analysis of this paper can be generalized to situations in which some of
the uncertainty about future preferences (for example due to the foreseen
receipt of new information) is incorporated into the explicit state space @. Since
such uncertainty is associated with state-dependent preferences over opportu-
nity acts, the generalization needs to invoke Karni-Schmeidler’s (1993) state-de-
pendence extension of Savage’s (1954) classical representation theorem; the
details have been worked out in Nehring (1996). Note that explicit uncertainty
about future preferences leads to violations of the indirect-utility property;
hence, in a state-dependent setting, preference for flexibility due to anticipated
unforeseen contingencies is appropriately identified with the following condi-
tional indirect-utility property, as proposed in Kreps (1992):

For all sets (constant acts) A, B €./, and all acts feF: [A4,E;f,E]1=[B,E;f, E°]
implies [A4, E; f, E°1=[AUB, E; f, E°].

EIU representations are not unique; the precise extent of the uniqueness
achieved is described in Nehring (1996). It is also shown that uniqueness can be
obtained if the set of a-priori possible future preference relations is sufficiently
restricted: in particular, it suffices that no two different possible future prefer-
ence relations have any upper-contour set in common. Such situations occur



116 KLAUS NEHRING

quite naturally with infinite domains X, as for example with the class of EU
preferences on a lottery space X of the form X = A”. In a Savage framework,
preferences of this type arise from uncertainty that is not resolved in the second
stage.

Dept. of Economics, University of California, Davis, CA 95616, U.S.A.;
kdnehring @ucdavis.edu; http: // polar.ucdavis.edu / ~ nehring

Manuscript received December, 1996; final revision received October, 1997.

APPENDIX: REMAINING PROOFS

PROOF OF PROPOSITION 1: (i) <. Consider u =Yg 4 Asvs, for A€ RY such that Ag>0 for
S # X, and such that A¢>0and A;>0imply SCT or S27. Define A={Se¥|A;>0o0r S=X}.
Then u({x}) =Xgc 4. s5Ag, for all x€X, and u(A)=Xgsc 1. 5 a-prs =uy) for any ye
N{SNA|Se A, SNA+T}; such y exist by the assumed ordering property of A. Since clearly
u(A) = u({z}) for all z€A,u(A) =max, ¢ u({x}); u is thus an [U-function.
(i) =. If u is an IU-function, let {x;},_, _, be an enumeration of X such that u({x,}) >
u({x,, ) for k=1,...,n— 1. Then

,,,,,

n—1

w= Z (u({xk}) - ll({kar]}))X(ijsk) + u({xn})XX

k=1

denotes a function of the desired form. By the first part of the proof, w is an IU-function. To show
its equality to u, it thus suffices to show equality for singleton-sets, as follows: w({x,}) =
Tz Ml ) — g, D) + ulx, ) = ul{x)).

(ii) . Immediate from the above implications. Q.E.D.

PROOFs OF LEMMA 1 AND PROPOSITION 3: The proofs can be obtained from straightforward
adaptations of standard results?* and are therefore omitted. Details can be found in Nehring (1996).

PrOOF OF LEMMA 2: Setting p = ¥ !(w) and noting that w(A)=p{SISNA =2} =
Yg e oPs x4(S) for all A €, the claim follows from the following series of equalities:

Y aart= ¥ af T oon) = Lo T auns)

Aey* Ae* sesf Ses/ Aey*
- Z pou(S). 0.E.D.
Sey

PROOF OF LEMMA 3: (i) Only if: Consider 7 and #' such that 7> #'. By the full-rangedness of
we f~!, there exist acts f and g such that (o f~')=m and W(ueo g ') = n'. Noting that > g
is equivalent by definition to W( o f ') A) > ¥(uog ) A) for all A of the form {x|xRy} (for

some y € X), this implies f>g. By ISD, f g, which translates into 7% o' via po f !> *uog 1.

*See, for example, Chateauneuf-Jaffray (1989).
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The converse is straightforward.
(ii) Only if: Define we I'Y by w(T) = #{S €S N T + T} /#{S €}, for T €. Clearly,

1
T (F) = —— 15 0.
(¢ 7) T 1>0

To ascertain that 7 is in the interior of I, an auxiliary equation (2) is needed. By Lemma 1, for
any A, T €«

CVETNADH L e e
w-l(l(A,)(T)={f) D it A°CT,
otherwise.

This yields

?) Z ‘I’_l(l{,‘”)(T) _ Z (- 1)#(T\Ac)Jrl =0;

TeY TeY: A°cT

the latter equality is standard (cf. Chateauneuf-Jaffray (1989, p. 281)).

By the continuity of ¥~ !, (1) and (2) imply, for any 4 €% and small enough >0, v im+
£l 4) € 4%, ie., T+ £l 4 € 'Y, By the monotonicity of > and Lemma 2, A, > 0.
The converse is immediate, noting that ¥(p)(X) =1 for all p € A¥. Q.E.D.

PrOOF OF THEOREM 4: Necessity is straightforward.

For sufficiency, assume w.Lo.g. that u(X)=0, and hence that u(S) <0 for all S€« by
monotonicity. Let u,,: & —» R_ be defined by u,,(S)= —(—u(S5)™. Let A denote its conjugate
M&bius inverse A" = ¥~ (u,,); note that —u,,(S) =X, . geA}.

We want to prove that, for some sufficiently large m, u,, is an EIU-function. By Proposition 1(ii),
it thus needs to be shown that for some sufficiently large m: AY > 0 for all S # X. Since X is finite,

it suffices to demonstrate that for any given S # X, AY > 0 for all sufficiently large m. Take S # X.

Case 1: For some x € S: u(S¢ U {x}) = u(S°).

We will show that AY = 0. Note that this result is straightforward if u is already known to be an
EIU function; however, we only know that u is ordinally submodular.

In Case 1, u,,(5° U {x}) = u,,(S°); since, moreover, u,, satisfies ordinal submodularity because u
does, it follows that u,,(T° U {x}) = u,,(T°) for all T such that x € T C S. We will show by induction
on the size of T that A} =0 for all T such that x € T C S, hence in particular that AY = 0.

This claim evidently holds for T ={x}. Suppose, then, that it holds for all A such that
x€AgTCS, which implies X 4., ¢ 4 rA4 = 0. From this one obtains

A= Z Mi =, (T {x}) —u,, (T9) = 0. Q.E.D.
A:x€eAcCT

Case 2: For all x€ S: u(S¢ U {x}) > u(S°).

We will show that lim,, _, ,A¥ / —u,,(8°) = 1, hence that AY > 0 for sufficiently large m.

From the result for Case 1, by the monotonicity of u,, and the fact that u,,(X) = 0, we know that
7 =0 whenever u,,(T¢) = 0.

From A§' = —1,(S) = Lp c AT = —14,,(8) = Lr 5. 4,7y % 0 AT ODE ODtains
@ AR L Z Py —u,,(T°)
_um(sc) _um(Tc) _um(sc) ’

TgS:iu,(TH+0
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From the definition of A" as the conjugate Mdbius inverse of u,,, it follows that

mo

Y, (A©)]

AT AcT

< < 2#T
_um(TC) _um(Tc)

in view of the monotonicity and nonpositivity of u,,.
The claim follows thus from (3), since by the definition of u,,, the condition “for all x € S:
u(S U {x}) > u(S)” implies (u,,(T)/u,,(S)) - 0 as m — o, for all T such that T ¢ S. Q.E.D.
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