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Abstract We define a general notion of single-peaked preferences based on abstract
betweenness relations. Special cases are the classical examples of single-peaked prefer-
ences on a line, the separable preferences on the hypercube, the “multi-dimensionally
single-peaked” preferences on the product of lines, but also the unrestricted preference
domain. Generalizing and unifying the existing literature, we show that a social choice
function is strategy-proof on a sufficiently rich domain of generalized single-peaked pref-
erences if and only if it takes the form of “voting by committees” satisfying a simple
condition called the “Intersection Property.”

Based on the Intersection Property, we show that the class of preference domains
associated with “median spaces” gives rise to the strongest possibility results, thereby
unifying and generalizing many existing possibility results in the literature. A space is
a median space if, for any triple of elements, there is a fourth element that is between
any pair of the triple; numerous examples are given, and the structure of median spaces
and the associated preference domains is analyzed.



1 Introduction

By the Gibbard-Satterthwaite impossibility theorem non-degenerate social choice func-
tions can be strategy-proof only on restricted domains. In response to this fundamental
result, a large literature has taken up the challenge of determining domains on which
possibility results emerge. In economic environments in which it is assumed that indi-
viduals care only about certain aspects of social alternatives, the well-known class of
Groves mechanisms offers a rich array of strategy-proof social choice functions under
the additional assumption of quasi-linear utility. By contrast, in contexts of “pure”
social choice (“voting”) individuals care about all aspects of the social state. Here,
a path-breaking paper by Moulin (1980) demonstrated the existence of a large class
of strategy-proof social choice functions in the Hotelling-Downs model in which so-
cial states can be ordered from left to right as in a line, and in which preferences are
single-peaked with respect to that ordering. Moulin showed that all strategy-proof so-
cial choice functions can be understood as generalizations of the classical median voter
rule. His result inspired a sizeable literature that obtained related characterizations
for other particular domains or proved impossibility results (see, among others, Bor-
der and Jordan (1983) and Barberd, Sonnenschein and Zhou (1991)). Remarkably, it
turned out that when a positive result could be obtained, the class of strategy-proof
social choice functions had a structure similar to that uncovered by Moulin which we
shall refer to as “voting by committees,” following Barberd, Sonnenschein and Zhou
(1991).

In this paper, we introduce a very large class of preference domains, referred to
as “generalized single-peaked” domains, and show that strategy-proof social choice
can be characterized in terms of voting by committees on these domains. This allows
us then to determine exactly which domains admit strategy-proof social choice func-
tions exhibiting fundamental additional properties such as non-dicatorship, anonymity,
neutrality, and efficiency. While much of this work is left to companion papers (see
Nehring and Puppe (2003a) and (2003b)), we shall identify here the class of domains
on which the strongest possibility result obtains; these are characterized geometrically
as “median spaces” and described in more detail below.

Generalized Single-peaked Domains

The basic idea underlying our approach is to describe the space of alternatives geo-
metrically in terms of a three-place betweenness relation, and to consider associated
domains of preferences that are single-peaked in the sense that individuals always prefer
social states that are between a given state and their most preferred state, the “peak”.

Following Nehring (1999), we shall conceptualize betweenness more specifically in
terms of the differential possession of relevant properties: a social state y is between
the social states x and z if y shares all relevant properties common to z and z. Single-
peakedness means that a state y is preferred to a state z whenever y is between z and the
peak z*, i.e. whenever y shares all properties with the peak z* that z shares with it (and
possibly others as well). Throughout, it will be assumed that a property is relevant
if and only if its negation is relevant. As further illustrated below, a great variety
of preference domains that arise naturally in applications can be described as single-
peaked domains with respect to such betweenness relations. In fact, to our knowledge
almost all domains that have been shown to enable non-degenerate strategy-proof social



choice in a voting context are generalized single-peaked domains in the sense. For
instance, the standard betweenness relation in case of a line is derived from properties
of the form “to the right (resp. left) of a given state.” But single-peaked domains can
also easily give rise to impossibility results. For instance, the unrestricted domain
envisaged by the Gibbard-Satterthwaite theorem can be described as the set of all
single-peaked preferences with respect to a vacuous betweenness relation that declares
no social state between any two other states; the corresponding relevant properties are,
for any social state x, “being equal to x,” and “being different from z.”

The Structure of Strategy-Proof Social Choice

Building on previous work culminating in Barberd, Masso and Neme (1997), our first
result, Theorem 1, shows that strategy-proof social choice on generalized single-peaked
domains can be described in a unified manner as “voting by committees.” This structure
has two aspects. First, the social choice depends on individuals’ preferences through
their most preferred alternative only, i.e. it satisfies “peaks only.” Second, the social
choice is determined by a separate “vote” on each property: an individual is construed
as voting for a property over its negation if and only if her top-ranked alternative
has the property. For example, in the special case in which voting by committees is
anonymous and neutral it takes the form of “majority voting on properties”; that is, a
chosen state has a particular property if and only if the majority of agents’ peaks have
that property.

Crucially, the voting by committees structure describes only an implication of
strategy-proofness, not a characterization, since it does not by itself allow one to gen-
erate well-defined social choice functions. For without restrictions on the family of
properties deemed relevant and/or the structure of committees, the properties chosen
by the various committees may well be mutually incompatible. Consider, for example,
majority voting on properties on a domain of three states, and take as relevant the
six properties of being equal to or different from any particular of these states, cor-
responding to the unrestricted domain of preferences. If there are three agents with
distinct peaks, a majority of agents votes for each property of the form “is different
from state z.” Since no social state is different from all social states (including itself),
the social choice is therefore empty. A committee structure is called consistent if the
properties chosen by each committee are always jointly realizable (irrespective of vot-
ers’ preferences). We show that a committee structure is consistent if and only if it
satisfies a simple condition, called the “Intersection Property.” This leads to a unifying
characterization of the class of all strategy-proof social choice functions on any general-
ized single-peaked domain, namely as voting by committees satisfying the Intersection
Property (see Theorem 2 below). For any particular single-peaked domain, it allows
one to describe the subclass of anonymous strategy-proof social choice functions in
terms of a system of linear inequalities.

Median Spaces as Distinguished Domains

The restrictions imposed by the Intersection Property on the admissible committees re-
flect the structure of the underlying space. The Intersection Property thereby provides
the crucial tool for determining on which single-peaked domains there exist well-behaved
strategy-proof social choice functions, but it does not answer this question by itself.



This is the central concern of the two companion papers Nehring and Puppe (2003a)
and (2003b). Here, we seek to determine those domains admitting a maximally rich
class of strategy-proof social choice functions. Specifically, we ask which betweenness
relations ensure consistency of any well-defined committee structure, or, in other words:
when does the Intersection Property hold trivially? In this case, we shall say that vot-
ing by committees is universally consistent. We show that voting by committees is
universally consistent if and only if the betweenness relation has the property that,
for any three distinct states, there exists a state between any pair of them. Such a
state is called a median of the triple, and the resulting space a median space. Universal
consistency implies (and turns out to be equivalent to) the existence of anonymous,
neutral and strategy-proof social choice functions amounting to “majority voting on
properties.” In the case of three agents, for example, majority voting on properties
boils down to choosing the median of the agents’ peaks. The median can be viewed as
a natural compromise between the voters’ preferences, since, by the single-peakedness,
every voter ranks the median above the other two agents’ peaks; thus, the median wins
a majority vote against any voter’s peak in pairwise comparison.

Median spaces represent the natural generalization and unification of the known
cases in which well-behaved strategy-proof social choice functions have been shown to
exist, the line and its multi-dimensional extensions on the one hand, and trees on the
other; see Border and Jordan (1983) as well as Barberd, Gul and Stacchetti (1993)
for the former, and Demange (1982) for the latter. In Nehring and Puppe (2003b)
we show that efficiency presupposes an underlying median space structure, unless the
social choice is dictatorial; thus, from this point of view as well, median spaces are
central.

Since median spaces turn out to play such a distinguished role, one would like to
characterize their associated preference domains directly, not merely indirectly via the
associated betweenness geometry. To this behalf, we show that the class of single-
peaked preferences on a median space can be described in terms of two fundamental
types of preference restrictions, convexity and separability. In the special case of the
line (or, more generally, in trees), the single-peaked preferences are simply the convex
ones; in the case of the hypercube considered in Barberd, Sonnenschein and Zhou
(1991), the single-peaked preferences are those that are separable. These are the two
pure cases; in general, single-peaked preferences on a median space are characterized
by a combination of convexity and separability restrictions.

Relation to the Literature

This paper was inspired by the remarkable paper Barbera, Massd and Neme (1997)
which demonstrated that strategy-proof social choice functions can be characterized in
terms of “voting by committees” much more generally than thought previously. These
authors looked at the domain of all single-peaked preferences defined on a fixed product
of lines, and considered subdomains of preferences by restricting the peaks to lie in
arbitrary prespecified subsets interpreted as “feasible sets.” By contrast, in this paper
we assume an arbitrary fixed set of social states and consider a wide range of different
preference domains over that set. This fixed set is understood to reflect all feasibility
constraints that may be relevant. Our central assumption is that the “betweenness
geometry” implicit in the domain can be described in terms of an abstract “property
space.” Sometimes these properties can be understood as Lancasterian characteristics,



but at other times they are merely useful mathematical constructs.

Since states in a property space can typically be viewed as appropriately positioned
points in a sufficiently high-dimensional hypercube, there is a close mathematical rela-
tionship between the setup of Barbera, Masso and Neme (1997) and ours. Indeed, for a
subclass of the preference domains considered here, a crucial step in our first main re-
sult, the “peaks-only” property, could be derived from their corresponding result using
an extension argument.! Here, we show that the “peaks-only” property applies more
generally; for the precise relation of our work to theirs, see Appendix 1.

Barbera, Masso and Neme (1997) also provided a characterization of consistency in
terms of a condition they called “intersection property” as well. Their condition is less
transparent and workable than the one obtained here; for instance, in the anonymous
case of “voting by quota,” our condition directly translates into a system of linear
inequalities, representing appropriate bounds on the quotas (see Section 3.3 below).

While median spaces are a well-known and well-studied object in abstract convex-
ity theory (see e.g. van de Vel (1993)), they do not appear to have been considered
anywhere in the strategy-proofness literature. Implicitly, however, the properties of
median spaces play a central role in Barberd, Sonnenschein and Zhou (1991) and Bar-
berd, Gul and Stacchetti (1993).

The remainder of the paper is organized as follows. Section 2 describes the preference
domains to which our characterization results apply. In particular, it introduces the
central concepts of single-peaked preference orderings with respect to general between-
ness relations, and of betweenness relations derived from property spaces.

In Section 3, we use these concepts to provide a generalization and unification of
the existing literature, including the main results of Moulin (1980), Barbera, Sonnen-
schein and Zhou (1991), Barberd, Gul and Stacchetti (1993) and Barbera, Masso and
Neme (1997). Specifically, we show that any strategy-proof social choice function on
a sufficiently rich domain of single-peaked preferences satisfying a weak condition of
“voter sovereignty” must be voting by committees, i.e. in our framework: “voting by
properties” (Theorem 1). We then derive a simple necessary and sufficient condition for
the consistency of committee structures, the “Intersection Property.” We thus obtain
a unifying characterization of strategy-proof social choice on generalized single-peaked
domains, namely as voting by committees satisfying the Intersection Property (Theo-
rem 2).

Section 4 introduces the notion of a median space. We show that voting by commit-
tees is universally consistent if and only if the underlying domain of social states is a
median space (Theorem 3). Median spaces thus give rise to the possibility of strategy-
proof social choice in the strong sense that any well-defined voting by committees rule
is consistent. Section 5 concludes, and all proofs are collected in Appendix 2.

2 Generalized Single-Peaked Domains

In this section, we describe the preference domains to which our later characterization
of strategy-proof social choice functions applies. Throughout, we assume that the
relevant preference restrictions are independent and identical across voters, so that the
domains are n-fold Cartesian products of one common set of individually admissible
preferences where n is the number of voters. The individual domains, in turn, can be

I This was done in an earlier version of this paper, see Nehring and Puppe (2002).



described as sufficiently rich sets of orderings that are “single-peaked” with respect to
an appropriately defined betweenness relation. For expository convenience, we consider
only the case of linear orderings here; the more general case of weak orderings and even
partial orders is treated in the working paper version Nehring and Puppe (2002).

2.1 Single-Peakedness with Respect to General Beetweenness
Relations

The classical example of a preference domain admitting non-dictatorial and strategy-
proof social choice is the domain of all single-peaked preferences on a line. Suppose that
the social alternatives are ordered from left to right as in Fig. 1a below. A preference
ordering > with top element x* is single-peaked if y > z whenever y is between z and
the peak xz*. Here, the relevant notion of “betweenness” is of course the standard one
corresponding to the left-to-right scale of the line. The aim of this paper is to study
the structure of strategy-proof social choice on domains of preferences that are “single-
peaked” with respect to more general betweenness relations. Formally, we will consider
a ternary relation 7" on a finite universe X of social states or social alternatives with
the interpretation that (z,y,2) € T if the social state y is between the social states
z and z. By convention, let (z,z,2) € T and (z,z,2) € T for all z, z, i.e. any state is
(weakly) between itself and any other state. The “betweenness” terminology will be
justified in the sequel by the requirement of further axiomatic properties on the ternary
relation.

Definition (Generalized Single-Peakedness) A preference ordering > on X is
single-peaked with respect to T if there exists * € X such that for all y # z,

(*,y,2) €T =y = 2. (2.1)

Thus, in analogy to the standard definition, a preference is generalized single-peaked
if any state y that is “I'-between” the peak x* and another state z is preferred to that
state. The set of all linear orderings on X that are single-peaked with respect to T will
be denoted by SX,T.

As a first illustration, consider the three graphs in Figure 1 below with the nodes
representing social states. To each graph one can associate the corresponding graphic
betweenness according to which a social state y is between the two states x and z if y
lies on some shortest path? connecting = and z. For instance, both y and y' are between
z and z in Figures la and 1b, while w is not between z and z in Figures 1b and lc.
The graphic betweenness associated with the line in Fig. 1a is of course the standard
betweenness and the corresponding notion of single-peakedness is the usual one. The
graph in Fig. 1b can be viewed as the (3-dimensional) “hypercube” corresponding to
the set {0,1}? of binary sequences of length 3. A preference is single-peaked with
respect to the graphic betweenness on a hypercube if and only if it is separable in
the sense of Barberd, Sonnenschein and Zhou (1991). Finally, the graph in Fig. 1c is
the complete graph in which each state is connected to every other state by an edge.
By consequence, the corresponding graphic betweenness is vacuous in the sense that
no state is between any two other states. Clearly, any linear preference ordering is
single-peaked with respect to this vacuous betweenness relation; therefore, the set of

2i.e. a path with a minimal number of edges



all generalized single-peaked preferences is the unrestricted preference domain in this
case.

z
z
w
Yy w
r—o—o—o—9o !
z y vy z Y z
z
la 1b lc

Figure 1: Three graphic betweenness relations

2.2 The Betweenness Structure of a Preference Domain

Obviously, any given preference ordering > is single-peaked with respect to some ap-
propriate betweenness relation (for instance, with respect to the betweenness relation
according to which a state is between two other states if and only if it is intermediate
in terms of the preference ordering >). The essence of the domain restrictions to be
described here is of course that all voters’ preferences be single-peaked with respect to
the same betweenness relation. This raises the question of which preference domains
can be described as generalized single-peaked domains, and if so, with respect to which
betweenness relations.

Thus, we will now take preference domains as the primitive, and use betweenness
relations in order to describe their relevant structure. Specifically, consider an arbitrary
collection D of linear preference orderings on X, and define a ternary relation T'p as
follows. For all z,y,z with y # z,

(z,y,2) € Tp :& [y > z for all > € D with peak z]. (2.2)

Also, by convention, (z,z,z) € Tp for all z,z. By construction, one has D C SX’TD,
i.e. any preference in D is single-peaked with respect to T'p. In fact, Tp is easily seen
to be the largest ternary relation with that property. On the other hand, note that D
will in general not include all single-peaked orderings with respect to Tp.

For instance, the betweenness relation associated with the unrestricted domain
via (2.2) is the vacuous betweenness according to which no state is between any two
other states. In fact, this is the betweenness associated with any domain such that,
for every pair x,y, there is a preference with = as top element and y as second best
element. As another example, consider the domain of all separable preferences on
the hypercube (Barberd, Sonnenschein and Zhou (1991)). As is easily verified, the
associated betweenness according to (2.2) is exactly the graphic betweenness of the
hypercube described above.

Any ternary relation 7' on X can be viewed as a collection {7 : z € X}, where
yT*z :< (x,y,z) € T. The binary relations T* are sometimes referred to as the base-
point relations associated with T (cf. van de Vel (1993, p.91)). For Tp as defined in
(2.2), each base-point relation T% is reflexive and transitive; moreover, if z is the peak
of some preference ordering in D, T’ is also antisymmetric, i.e. a partial order.



In order for the relevant qualitative structure of a preference domain D to be fully
described by the associated betweenness relation Tp, we need to make two types of
assumptions described in the following two subsections: that the domain be rich rel-
ative to its betweenness relation, and that its betweenness relation have appropriate
geometric structure.

2.3 Rich Domains

In the following, we will impose two “richness” conditions on domains of single-peaked
preferences. Say that z and y are neighbours if (z,w,y) € T implies [w = z or w = y],
i.e. z and y are neighbours if no other point is between them.

R1 For all neighbours z,y there is >= € D such that for all w € X \ {z,y}, z > y > w.
R2 For all z,y, z with (z,y,2) € T, there is > € D with peak z such that z > y.

Condition R1 requires that, for any pair of neighbours, there is a preference ordering
that has one of them as peak and the other as the second best element. Condition
R2 states that, for each triple z,y, 2z such that y is not between z and z, there is a
preference with peak x that ranks z above y. Observe that, by definition, any domain
D satisfies R2 with respect to the associated Tp.

In the following, we will say that a domain D C S x,T of single-peaked preferences is
rich if it satisfies R1 and R2. Note, in particular, that a rich domain includes for each
x at least one preference ordering with peak x. If all base-point relations T are partial
orders, then the set SX’T of all single-peaked preference orderings with respect to T is
rich. Moreover, for any 7' such that all base-point relations T are partial orders and
for any D C ‘SA'X7T satisfying R2 with respect to 7', one has T' = T'p.

2.4 Betweenness Relations Derived from Property Spaces

The requirement that the base-point relations be partial orders lends useful mathemat-
ical structure to the analysis, but not quite enough for the purpose of characterizing the
class of all strategy-proof social choice functions on generalized single-peaked domains.
Throughout, we will rely on the additional assumption that the betweenness relation
can be derived from a “property space,” as follows.

Suppose that the elements of X are distinguished by different basic properties. For-
mally, let these properties be described by a non-empty family H# C 2% of subsets of X
where each H € H corresponds to a property possessed by all alternatives in H C X
but by no alternative in the complement H¢ := X \ H. The basic properties are thus
identified extensionally: for instance, the basic property “the tax rate on labour in-
come is 10% or less” is identified with the set of all social states in which the tax rate
satisfies the required condition. We assume that the list H of basic properties satisfies
the following three conditions.

H1 (Non-Triviality) H € H = H # 0.
H2 (Closedness under Negation) H € H = H® € H.
H3 (Separation) for all 2 # y there exists H € H such that « € H and y ¢ H.

Condition H1 says that any basic property is possessed by some element in X. Con-
dition H2 asserts that for any basic property corresponding to H there is also the
complementary property possessed by all alternatives not in H. We will refer to a
pair (H, H¢) as an issue. Finally, condition H3 says that any two distinct elements are



distinguished by at least one basic property. A pair (X, H) satisfying H1-H3 will be
called a property space.

Following Nehring (1999), a property space (X, H) gives rise to a natural between-
ness relation Ty, as follows. For all z,, z,

(x,y,2) € Ty = [foral He H:{z,2} CH =y € H|. (2.3)

Thus, y is between z and z in the sense of Ty if y possesses all basic properties that
are common to z and z (and possible some more). The ternary betweenness relation
T3 induced by (X, H) satisfies the following four conditions. For all z,y, z, x', 2',

T1 (Reflexivity) y € {z,2} = (z,y,2) € T.

T2 (Symmetry) (z,y,2) € T & (z,y,z) € T.

T3 (Transitivity) [(z,2',2z) € T and (z,2',2) € T and (2',y,2") € T] = (z,y,2) € T.
T4 (Antisymmetry) [(z,y,2) € T and (z,2,y) € T| = y = z.

The reflexivity condition T1 and the symmetry condition T2 follow at once from the
definition of T%. Note that it is the symmetry condition that justifies a geometric
interpretation of T as “betweenness” relation. The transitivity condition T3 is also
easily verified; it states that if both 2’ and 2z’ are between z and z, and moreover y is
between z' and z', then y must also be between x and z. Note that transitivity in this
sense strengthens the requirement that all base-point relations be transitive, which
corresponds to taking = z' in condition T3. Finally, the antisymmetry condition
T4 is due to the separation property H3. Probably the biggest deal in terms of the
entailed restrictions on the underlying preference domain is the symmetry condition
that gives the betweenness relation its geometric flavor. Consider, for example, any
domain consisting of exactly one linear ordering for each z € X. While such a domain
is always rich (relative to Tp), one can show that its associated betweenness can never
be symmetric.

Are the conditions T1-T4 sufficient to guarantee that a ternary relation 7' is induced
by a property space via (2.3)? It turns out that one needs the following additional
condition. Say that a set A C X is convex if for all z,y, z,

{z,2} CAand (z,y,2) € T] =>y € A. (2.4)

Hence, in accordance with the usual notion of convexity in a Euclidean space, a set
is convex if it contains with any two elements all elements that are between them.
Furthermore, say that a subset H C X is a half-space if both H and its complement
HF¢ are non-empty and convex.

T5 (Separation) If (z,y,z) € T, then there exists a half-space H such that
HD{z,z}and y ¢ H.

Fact 2.1 Let T be a ternary relation on X. There exists a collection Hr of basic
properties satisfying HI-H3 such that T' = T3y, i.e. such that T is derived from Hr
via (2.3), if and only if T satisfies T1-T5.

Necessity of the conditions T1-T5 is easily verified (cf. Nehring (1999)); their suffi-
ciency follows from defining the underlying property space Hp as the collection of
all half-spaces induced by T'. However, the underlying property space is not uniquely



determined by 7', and frequently it is not necessary to consider the collection of all half-
spaces. Henceforth, we assume that the collection of basic properties H is sufficiently
rich so that any half-space (with respect to T%) can be obtained as the intersection of
a subfamily in H.

The following result characterizes single-peakedness in terms of the basic properties
from which the betweenness is derived.

Fact 2.2 Let (X,H) be a property space. A preference ordering - is single-peaked with
respect to Ty if and only if there exists a partition H = HgaUHy with HyN'Hy = 0 and
HeHy & HC € Hy such that

(1) y > z whenever y # z and y € H for all H € H, such that z € H, and
(ii) there exists x* such that z* € H for all H € H,,.

In view of condition (i), single-peakedness requires that it must be possible to partition
all basic properties into a set of “good” properties (those in H,) and a set of “bad”
properties (those in Hy) in a separable way: a property is good or bad no matter with
which other properties it is combined. In addition to separability, single-peakedness
also requires, by condition (ii), that all good properties are jointly compatible, that
is: possessed by some ideal point x* which then represents the preference peak. The
ordinally separable representation in Fact 2.2 suggests a natural cardinal strengthening,
in which preferences have an additive utility representation of the form

u(zx) = Z AH,

HeMH, Hoz

where Ay > 0 for all H € H,;. The domain D of all additive preferences in this sense
is always rich relative to Tp = T%.

Summarizing, there are two ways to think of the class of domains to which our char-
acterization of strategy-proof social choice applies. First, one may start with a property
space (X,H) and consider any rich domain of single-peaked preferences with respect
to the induced betweenness T. In this case, conditions T1-T5 on the betweenness
relation are automatically satisfied.

Alternatively, one can start with a domain D and consider the associated ternary
relation Tp according to (2.2), assuming that Tp satisfies conditions T1-T5. The basic
properties needed for the description of the common structure underlying all strategy-
proof social choice functions (see Section 3 below) are then derived from Tp according
to Fact 2.1. In this case, the richness condition R2 is automatically satisfied. Moreover,
if any state is the peak of some preference ordering in D, then the base-point relations
are all partial orders. Thus, besides the richness requirement R1, the main “regularity”
assumptions needed for our analysis turn out to be the symmetry condition T2 and
the separation condition T5.

2.5 Examples

To illustrate the above concepts, consider the following examples of generalized single-
peaked domains. The first three correspond to the graphic betweenness relations in
Figure 1 above.

Example 1 (Single-Peakedness on Line) Let X be linearly ordered by >, and
consider the betweenness relation T given by (z,y,2) € T & [z >y >z or z > y > x|



(cf. Fig. 1a). This betweenness can be derived via (2.3) from the family H of all sets of
the form Hs, :={y > w : for some w € X} or H<,, := {y < w: for some w € X}.
Each basic property is thus of the form “lying to the right of w” or “lying to the left
of w” (see Figure 2a below). A subset is convex if and only if it is an interval, and the
half-spaces are exactly the basic properties of the form H>,, or H<,,. A preference >
is single-peaked with respect to T if and only if it is convex in the sense that all upper
contour sets {y : y = x} are convex.

Example 2 (Separability on the Hypercube) Let X = {0, 1}¥, which we refer to
as the K-dimensional hypercube (cf. Fig. 1b). An element 2 € {0, 1} is thus described
as a sequence r = (z',...,2%) with ¥ € {0,1}, and the natural betweenness is given
by (z,y,2) € T & [forall k : 2% = 28 = y* = 2F = 2*]. As is easily verified, this
betweenness coincides with the graphic betweenness in Fig. 1b above. Geometrically,
y is between z and z if and only if y is contained in the “subcube” spanned by x and
z (see Fig. 1b above and note, for instance, that the whole 3-hypercube is between
w and y'). This betweenness can be derived from the basic properties of the form
HF = {z : 2¥ = 1} and H} := {z : 2F = 0} for all k (see Figure 2b below which
depicts the two basic properties corresponding to the vertical coordinate). In view of
Fact 2.2, a preference > is single-peaked with respect to 7' if and only if it is separable
in the sense that, for all z,y and all &,

z- (@ yf) e @y h ) -y

Example 3 (The Unrestricted Domain) The vacuous betweenness on X, defined by
(z,y,2) € T :& y € {x,z}, can be derived via (2.3) from the family A of all properties
of the form {z} (“being equal to z”) and X \ {z} (“being different from z”) for all
x € X (see Figure 2c below which depicts the property H = {w}). As noted above,
any linear preference ordering is single-peaked with respect to the vacuous betweenness
relation, i.e. the set of all single-peaked preferences is the unrestricted domain. Note
that any subset of X is convex, hence in fact a half-space. Observe also that a domain
is rich in the sense of R1 and R2 with respect to the vacuous betweenness relation if
and only if, for any pair (x,y), there exists a preference ordering that ranks = on top
and y as second-best alternative.

H H° R
H o @ e
e H¢ ¢ .
2a 2b 2c

Figure 2: Basic properties underlying Examples 1-3

Example 4 (Products) The hypercube betweenness of Example 2 above is an instance
of a product betweenness. More generally, let X = X! x...x XX where the alternatives
in each factor X* are described by a list #* of basic properties referring to coordinate
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k. Let H = {H" x [];,, X/ : for some k and H* € #*}, and denote by Ty the

betweenness relation on X* induced by H*. The product betweenness T induced by H
according to (2.3) is given by,

(z,y,2) € T & [for all k: (2%, y*, 2%) € Tyu).

Figure 3a below depicts the product of two lines; the alternatives between = and z are
precisely the alternatives contained in the dotted rectangle spanned by = and z.

Example 5 (Cycles) Let X = {z1,...,2;}, and consider the I-cycle on X, i.e. the graph
with the edges (x;, ;+1), where indices are understood modulo [ so that z;1; = x; (see
Figure 3b for the case | = 6). The graphic betweenness on the Il-cycle is derived
from a property space as follows. If [ is even, the basic properties are of the form
{zj, x4, ...,acj_1+%}. If [ is odd, the family of basic properties consists of all sets of

the form {z;, 241, ...,a:ijerTl} or {z;,xj11, ...,a:ijszl}.

H H¢ Tj41
> ° SRR ,z ° Z; Tj42
» o , e ¢ o TFI TH
3 ° ’ ° ) ° *ﬂ.c ‘Hc
: Tj—1

S R )

> oo o T o
3a: Product of lines 3b: Cycles

Figure 3: Further property spaces

Example 6 (“Doing the Opposite”) Suppose that, for each state z, there exists a
state T (“the opposite of 2”) such that £ = x. Consider then the domain D of all linear
orderings > such that z = y < ¢ > Z, i.e. if a state is deemed better than another,
then its opposite must be worse than that state’s opposite. The canonical betweenness
relation Tp associated with D according to (2.2) is given by

(z,y,2) €Tp & [z =2 or y € {z,2}],

i.e. any element is between opposite pairs, but no element is between two non-opposite
states. As is easily verified T is the graphic betweenness corresponding to the graph in
which each point is connected by an edge to all other points but to its opposite element.
A subset A # X is convex with respect to Tp if and onlyif [z € A= Z ¢ A],and H # X
is a half-space if and only if [z € H < Z ¢ H]. In particular, Tp satisfies the separation
condition T5; by Fact 2.1, it can thus be derived from a property space according to
(2.3). In contrast to some of the examples above, however, the basic properties (i.e. the
half-spaces) do not have a meaningful interpretation as “Lancasterian characteristics”
here.

11



Observe that a preference is single-peaked with respect to 7> whenever the oppo-
site of the peak is the least preferred alternative. By contrast, for a preference in D,
the ranking between any pair is uniquely determined by the ranking of the opposite
pair. Thus, D is much smaller than the domain SX,TD of all single-peaked prefer-
ences. Nevertheless, the induced betweenness Tp is all what matters for the analysis
of strategy-proofness.

3 Voting by Committees as Voting by Properties
3.1 Definition

Let N ={1,...,n} be a set of voters. Each voter i is characterized by a linear preference
ordering >; in some domain D; the best element of X with respect to >; is denoted
by zf. A social choice function is a mapping F' : D" — X that assigns to each
preference profile (>1,...,>,) in D™ a unique social alternative F(>1,...,>,) € X.
In the following, we will assume that X is endowed with the structure of a property
space; in the next subsection, we will then consider social choice functions defined on
rich domains of generalized single-peaked preferences.

An important class of social choice functions are those that only depend on the
peaks of voters’ preferences; these are referred to as “voting schemes” (cf. Barberd, Gul
and Stacchetti (1993)). A social choice function F' is a voting scheme if there exists
a function f : X" — X such that for all (>1,....,>4), F(>1,...,=n) = f(x],...,x%),
where z is voter ¢’s peak. In this case, we say that F' satisfies peaks only. With slight
abuse of terminology, we will also refer to any f : X™ — X as a voting scheme, since
any such function f naturally induces a social choice function satisfying peaks only.

Given a description of alternatives in terms of their properties, a natural way to
generate a social choice is to determine the final outcome via its properties. This is
described now in detail.

Definition (Committees) A committee is a non-empty family W of subsets of NV
satisfying [W € W and W' D W] = W' € W. The coalitions in W are called winning.

For instance, majority voting corresponds to W% ={W C N : #W > % - n}.
Majority voting is a special case of voting by quota: for any number ¢ € (0,1), voting

by quota g corresponds to the committee Wy = {W C N : #W > ¢ - n}.

Definition (Committee Structures) A committee structure on a property space
(X,H) is a mapping W : H — Wy that assigns a committee to each basic property
H € H satisfying the following two conditions.

CS1W e Wy & W ¢ Wge.
CS2[HCH' andW e Wy]| =W € Wg.

As is easily verified, CS1 implies that, for any basic property H, the committees
corresponding to H and H°¢ are interrelated as follows.

Wp={WCN:WnNW'#0 for all W' € Wg}. (3.1)

Consider now the following voting procedure, adapted to the present framework
from Barberd, Sonnenschein and Zhou (1991).

12



Definition (Voting by Committees) Given a property space (X, #) and a commit-
tee structure W, voting by committees is the mapping fyy : X" — 2% such that, for all
£e X",

x € fw(€) e forall He Hwithez e H:{i:& € H} € Wy (3.2)

In our present framework, voting by committees amounts to “voting by properties”
in that each committee decides whether or not the final outcome is to have one out
of two complementary basic properties. Note that fy,(£) € X is not assumed to be
non-empty; in particular, fyy does not yet define a voting scheme in the sense of the
above definition.

Definition (Consistency) A committee structure W is called consistent if fyy (&) # 0
for all £ € X™. If W is consistent, the corresponding voting procedure fyy, will also be
referred to as consistent.

Fact 3.1 If fw(&) # 0, then fw (&) is single-valued. In particular, voting by commit-
tees defines a voting scheme whenever it is consistent.

If fyy is consistent, one has for all H and &,
fw(f)EHﬁ{i:fiEH}EWH (33)

by (3.2) and CS1. Since N € Wy for all H, this implies that fy, satisfies unanimity,
ie forall z € X, f(z,z,...,x) = z. In particular, fyy is onto whenever it is consistent,
i.e. each z € X is in the range of fyy.

Voting by committees is characterized by the following monotonicity condition. Say
that a voting scheme f : X™ — X is monotone in properties if, for all £,¢', H,

[f&)eHand {i: & e HY C{i: & e HY = f(¢') € H.

Monotonicity in properties states that if the final outcome has some property H and
the voters’ support for this property does not decrease, then the resulting final outcome
must have this property as well.

Proposition 3.1 A voting scheme f : X™ — X is monotone in properties and onto if
and only if it is voting by committees with a consistent committee structure.

A social choice function F' is called anonymous if it is invariant with respect to
permutations of individual preferences; similarly, a voting scheme f is called anonymous
if f(&1,-,6n) = f(&o(1)s s &o(ny) for any permutation o : N — N. The following fact
shows that anonymous voting by committees takes the form of woting by quota; the
first part is immediate from the definitions, the second part follows at once from (3.1).

Fact 3.2 Voting by committees fyy is anonymous if and only if it is voting by quota,
i.e. for all H there exists qu € [0,1] such that Wg = {W : #W > qu -n} if qug < 1
and Wi = {N} if qu = 1.3 If fw is consistent, the quotas can be chosen such that,
forall H e H, qge =1 —qpg.

Observe that by Fact 3.2 and (3.1) voting by committees is anonymous and neutral in
the sense that Wy = Wy for all H, H' € H if and only if it is issue-by-issue majority

voting with an odd number of voters, i.e. if and only if n is odd and, for all H, Wg

corresponds to voting by quota g = 3.

3Note that the quotas gz are not uniquely determined.
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3.2 The Equivalence of Strategy-Proofness and Voting by
Committees

A social choice function F': D" — X is strategy-proof on D if for all ¢ and »;, >}€ D,

F(1, ey iy ey ) =i F( 1,y ey s ey =)
Furthermore, say that F' satisfies voter sovereignty if F' is onto, i.e. if any z € X is
in the range of F. For any committee structure WV, denote by Fyy : D* — 2X the
mapping defined by Fyy (1, ..., =n) = fw(a], ..., z}), where for each i, z} is the peak
of »; on X. The mapping Fy, will also be referred as voting by committees.

Let now T be the betweenness relation derived from H according to (2.3), and
denote by Sx 1 any subset of single-peaked preferences with respect to 7' that is rich
in the sense of conditions R1 and R2. When no confusion can arise, we will simply
write S for Sx,7 and refer to it as a rich single-peaked domain.

Proposition 3.2 Let S be any rich single-peaked domain, and let F : 8" — X be
represented by the voting scheme f : X™ — X. Then, F is strategy-proof on S if and
only if f is monotone in properties.

In combination with Proposition 3.1, this implies that a voting scheme is strategy-
proof on a rich single-peaked domain if and only if it is voting by committees with a
consistent committee structure. We now want to show that any strategy-proof social
choice function F': 8™ — X satisfying voter sovereignty is voting by committees. For
this, it remains to show that any such F' is a voting scheme, i.e. that it satisfies peaks
only.

Proposition 3.3 FEvery strategy-proof social choice function F : 8™ — X on a rich
single-peaked domain that satisfies voter sovereignty is a voting scheme, i.e. satisfies
peaks only.

Proposition 3.3 generalizes a corresponding result in Barberd, Masso and Neme (1997).
While our proof in the appendix follows their proof in overall design, it augments it by
a number of significant steps. Specifically, it applies to a larger class of property spaces
and it makes explicit the needed richness conditions (see the appendix for the precise
relation between their result and ours).

Combining Propositions 3.1 — 3.3 yields the following result.

Theorem 1 A social choice function F : 8™ — X satisfies voter sovereignty and is
strategy-proof on a rich single-peaked domain S if and only if it is voting by committees
with a consistent committee structure.

3.3 Consistent Committee Structures: The Intersection
Property

By Theorem 1, a social choice function is strategy-proof on a rich domain of single-
peaked preferences if and only if it is consistent voting by committes. It is, however,
not self-evident whether a given committee structure is consistent. The needed char-
acterization of consistency is provided in this subsection. As a simple example of an
inconsistent committee structure, consider the vacuous betweenness on X = {x,y,z},
and assume that voting by committees takes the form of issue-by-issue majority voting
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among three voters. If all three peaks of the voters are distinct, each of the follow-
ing basic properties gets a majority of two votes: {y,z} (“being different from z”),
{z, 2z} (“being different from y”), and {z,y} (“being different from z”). But clearly,
{y,z}n{z,z} N {x,y} = 0, i.e. the basic properties determined by the committees are
jointly incompatible. Consistency of voting by committees requires that the committee
structure be compatible with the structure of basic properties, as follows.

Definition (Critical Family) Say that a family G C H of basic properties is a critical
family if NG = () and for all G € G, N(G \ {G}) £ 0.

The interpretation of a critical family is as an exclusion of a certain combination of
basic properties. “Criticality” (i.e. minimality) means that this exclusion is not already
entailed by a more general exclusion. More concretely, consider G = {G,...,G;}; to
say that G is a critical family is to say that for any combination of [ — 1 basic properties
in G there are states possessing them jointly, but any state possessing [ — 1 of the basic
properties cannot possess the remaining [-th property. Thus, critical families reflect the
“entailment logic” of the underlying property space, a theme explored in more detail
in Section 4.3 below. Trivial instances of critical families are all pairs {H, H¢} of com-
plementary properties. A non-trivial example of a critical family are the three basic
properties {y, z}, {z,2} and {z,y} in the above example of the set {z,y, 2} endowed
with the vacuous betweenness: any two of these basic properties have a non-empty
intersection, while the intersection of all three is empty.

Intersection Property Say that voting by committtees Fyy satisfies the Intersection
Property if for any critical family G = {G1, ..., G;}, and any selection W; € Wg;,

l
(Y w; #0.

j=1

Using (3.1), it is easily verified that the Intersection Property applied to critical families
with two elements yields precisely conditions CS1 and CS2 above.

Proposition 3.4 Voting by committees is consistent if and only if it satisfies the In-
tersection Property.

Combining this result with Theorem 1, we obtain the following characterization of
all strategy-proof social choice functions on any rich single-peaked domain.

Theorem 2 A social choice function F' : 8™ — X satisfies voter sovereignty and is
strategy-proof on a rich single-peaked domain S if and only if it is voting by committees
satisfying the Intersection Property.

Observe that by this result the class of all strategy-proof social choice functions on a
domain Sx 7 only depends on the “betweenness geometry” of the underlying property
space in that any rich single-peaked domain defined on the same property space induces
the same class of strategy-proof social choice functions.

Theorem 2 generalizes Corollary 3 in Barberd, Masso and Neme (1997) which applies
to the domains S x, 7 where X is some subset of a product of lines. In that context, these
authors also derive a condition called “intersection property” that can be viewed as
relating families of “inconsistent properties” to admissible winning coalitions. However,
the condition obtained here is much simpler and more powerful due to the restriction
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to minimal such families. For instance, in the anonymous case of voting by quota it
simplifies to a system of linear inequalities.

Specifically, in the anonymous case, the Intersection Property can be formulated as
follows. If, for any critical family G,

> am > #G-1, (3.4)

Heg

then voting by quotas qg for H € H is consistent. Conversely, if anonymous voting by
committees is consistent, then it can be represented by quotas satisfying (3.4). Observe
that this immediately implies that issue-by-issue majority voting is consistent if and
only if any critical family has two members. The remarkable consequences of this
observation are explored in the following section.

To illustrate the intuition behind the Intersection Property, we verify the necessity
of (3.4) in the special case of the vacuous betweenness on X = {1, ..., 2, }; from this
it is straightforward to infer the non-existence of anonymous and strategy-proof social
choice functions on an unrestricted domain if m > 3. Recall from Example 3 that the
vacuous betweenness corresponds to the basic properties H; = {z;} (“being equal to
z;”) and Hf = X \ {z;} (“being different from z;”), for j = 1,...,m. The non-trivial
critical families are {Hf,..., HS} and, for all j # k, {H,;, Hy}. Consider the critical
family {HY, ..., HS }, and suppose that (3.4) is violated, i.e. Zj qj <m — 1, where ¢j
denotes the quota corresponding to H;. Ifg=1- qj is the quota corresponding to
Hj, one thus obtains Zj gj > 1, say Zj gj =1+ m- ¢ for some 6 > 0. Now assign to
a fraction of ¢; — 0 voters the peak x;. Since none of the basic properties H; = {z;}
reaches the quota, all complements are enforced; but since their intersection is empty,
consistency is violated.

In Nehring and Puppe (2003a) we use the Intersection Property to characterize
the domains that admit strategy-proof social choice functions satisfying fundamental
additional properties such as non-dictatorship and anonymity. Thanks to the Intersec-
tion Property this task boils down to relating committee structures satisfying specified
conditions to the underlying property space which is fully determined by the collec-
tion of its critical families. The characterizations can thus be formulated in terms of
combinatorial conditions on the critical families of a property space.

4 Strong Possibility on Median Spaces

By Theorem 2 above, strategy-proof social choice on single-peaked domains takes the
form of voting by committees satisfying the Intersection Property. For any given do-
main this yields a simple characterization of the class of all strategy-proof social choice
functions. On the other hand, it does not answer the question for which property
spaces there exist well-behaved strategy-proof social choice functions on the associated
domain of single-peaked preferences. In this section, we derive a simple necessary and
sufficient condition on a property space such that all well-defined committee struc-
tures are consistent. It turns out that the same condition also characterizes the class of
spaces on which anonymous and neutral strategy-proof social choice functions, amount-
ing to issue-by-issue majority voting, exist. The property spaces considered here thus
enable well-behaved strategy-proof social choice in a strong sense. Weaker notions of
“well-behavedness” are considered in Nehring and Puppe (2003a).
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4.1 TUniversal Consistency of Median Spaces

In this subsection, we will study property spaces that admit a rich set of strategy-proof
social choice functions in the sense of the following condition.

Definition (Universal Consistency) A property space (X, H) is universally consis-
tent if voting by committees fyy is consistent for any committee structure W (satisfying
CS1 and CS2).

Obviously, universal consistency implies consistency of issue-by-issue majority voting.
As an immediate consequence of (3.4), we have already seen that issue-by-issue ma-
jority voting is consistent if and only if every critical family has only two elements.
What does that mean geometrically? To provide the intuition, consider three voters
with peaks &, &, & and denote by m the chosen state under issue-by-issue majority
voting. Consider any basic property H possessed by both & and &, i.e. assume that
{&,&} C H. Then H gets a majority of at least two votes over H¢, hence we must
have m € H (see Figure 4 below). By (2.3), this means that m is between & and &.
But the same argument applies to any basic property jointly possessed by & and &3,
and to any basic property jointly possessed by & and &3. In other words, a necessary
condition for issue-by-issue majority voting to be consistent is that any triple &, &,
& of social states admits a state m = m(&;, &2, &) that is between any pair of them.
Such a state will be called a “median” of the triple.

Figure 4: The median property

Definition (Median Space) A property space (X, H) is called a median space if the
induced betweenness relation 7' satisfies the following condition. For all z,y,z € X
there exists an element m = m(x,y,2) € X, called a median of z,y, z, such that m is
between any pair of {z,y, z}, i.e. such that {(z,m,y), (z,m, 2), (y,,m,2)} CT.

Median spaces are a classic topic in abstract convexity theory (see, e.g., Bandelt and
Hedlikova (1983) and the references in van de Vel (1993)).

Fact 4.1 In a median space, any triple has a unique median.

Median spaces can be characterized in terms of the underlying properties H as
follows. Say that a family A C 2% of subsets of X has the pairwise intersection property
if for any collection Ay, ..., 4; € A such that Ay N Ay # 0 for all k,h € {1,...,1}, one
has NL_, Ay, # 0.
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Proposition 4.1 The following statements are equivalent.
(1) (X, H) is a median space.

(i1) H has the pairwise intersection property.

(iii) For all critical families G, #G = 2.

Thus, a property space is a median space if and only if pairwise compatibility of a
family of basic properties implies their joint compatibility. Note that in contrast to
the Intersection Property for committees, the pairwise intersection property imposes a
restriction only on the space (X, H).

The existence of a median for any triple is not only necessary for the consistency of
issue-by-issue majority voting but also sufficient, in fact it is even sufficient for universal
consistency, as shown by the following result.

Theorem 3 The following statements are equivalent.

(1) (X, H) is a median space.

(ii) (X, H) is universally consistent.

(ii1) Issue-by-issue majority voting (among an odd number of voters) is consistent on

(X, H).

The implication “(i) = (ii)” is an easy consequence of two results that have already been
established. By Proposition 4.1, all critical families in a median space have cardinality
two. But for such critical families, the Intersection Property of Section 3.3 reduces to
the requirements CS1 and CS2. Hence, by Proposition 3.4, any committee structure
satisfying these two requirements is consistent.

Theorem 3 has the following obvious corollary which shows that median spaces
admit a maximal class of strategy-proof social choice functions.

Corollary 4.1 Let (X,H) be a median space. A social choice function F' : S" — X
satisfies voter sovereignty and is strategy-proof on a rich single-peaked domain S if and
only if F' is voting by committees with an arbitrary well-defined committee structure.

Universal consistency ensures the existence of a large class of strategy-proof social
choice functions with a very simple structure. In particular, any “partial” committee
structure satisfying the fundamental restrictions CS1 and CS2 can be extended to a
complete, consistent committee structure. Formally, let F be any subset of H that is
closed under complements. A partial committee structure is a mapping W that assigns
to each H € F a committee Wy satisfying CS1 and CS2.

Proposition 4.2 Let (X, H) be a median space, and let F C H be closed under com-
plements. Then, any partial committee structure on F can be extended to a consistent
committee structure on H.

To appreciate the strength of this result, consider the case F = {H, H¢} for some
H € H. Any property space verifying the assertion of Proposition 4.2 must admit
non-dictatorial strategy-proof social choice functions, since the committees for H and
HF¢ can be specified in such a way that no single voter ever forms a winning coalition.
However, one can show that there are many non-dictatorial domains for which the
assertion fails to hold. The result has also interesting consequences for non-degenerate
subsets of basic properties. For example, one may ask when it is possible to require that
all basic property in some subset H' C H can only be chosen unanimously, i.e. when
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there exists a consistent committee structure such that Wy = {N} for all H € #'.
One can easily infer from Proposition 4.2 that in a median space this is true if and
only if the associated family of complementary properties is jointly compatible, i.e. if
and only if N{H® : H € H'} # 0. While always necessary, this condition is in general
not sufficient outside median spaces.

4.2 Examples of Median Spaces

The above results show how remarkably well-behaved median spaces are for the pur-
poses of the analysis of strategy-proof social choice. It remains to understand this class
better in itself. To this purpose, we will first present a range of examples, then show
that all median spaces are characterized by a simple “entailment logic” (Subsection
4.3), and finally, moving from the median spaces themselves to the associated prefer-
ence domains, show that all such domains can be described in terms of economically
natural restrictions on preferences (Subsection 4.4).

First, consider the examples of Section 2 above. Since y is the median of z,y, z
whenever y is between z and z, lines (Example 1 above) are median spaces with the
middle point as the median of any triple. More generally, any graphic betwenness
derived from a tree (i.e. connected and acyclic graph) gives rise to a median space.
To see this, consider for any triple of points in a tree the (unique) shortest paths
connecting any pair. By the acyclicity, these three shortest paths have exactly one
point in common, namely the median of the triple.

Furthermore, all hypercubes (Example 2) are median spaces; a typical configuration
is the triple z, z, w with the median y in Fig. 1b above. More generally, any distributive
lattice is a median space (see van de Vel (1993)). In addition, products (Example 4)
are median spaces if and only if every factor is a median space; indeed, the median
on a product is simply given by taking the median in each coordinate. Summarizing,
our analysis shows that the common source of the possibilities of strategy-proof social
choice derived in Moulin (1980), Barbera, Sonnenschein and Zhou (1991) and Barbera,
Gul and Stacchetti (1993) is that in each case the underlying space is a median space.

In contrast to these examples, the property spaces underlying Examples 3, 5 and
6 are not median spaces whenever #X > 3 (with the exception of the 4-cycle which
is isomorphic to the two-dimensional hypercube). For instance, the triple z,z,w in
Fig. 1c above does not have a median. More generally, in Example 3 (the vacuous
betweenness) no triple of pairwise distinct alternatives admits a median. The fact that
cycles (Example 5) are not median spaces is exemplified by the triple z;_s, 2, zj+2 in
Fig. 3b above. In Example 6 (doing the opposite) no triple of mutually non-opposite
elements admits a median.

Further examples of median spaces are appropiate subdomains of median spaces.

Definition (Median Stability) A subset ¥ C X of a median space (X, #) is called
median stable if m(z,y,z) € Y for all {z,y,2z} CY.

For instance, any subset of the form {z,y,z,m} where m is the median of z,y, z is
median stable. In general, one has the following characterization of median stability
(cf. van de Vel (1993, p.130)).

Fact 4.2 Let (X,H) be a median space, and let H H' € H. Then, the set Y =
X\ (H N H') is median stable. Moreover, all median stable subsets of X are obtained
by sequentially deleting intersections of two basic properties.
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The following figure depicts a typical median stable subset of the product of two lines;
its median stability follows at once from Fact 4.2.
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Figure 5: A median stable subset of the product of two lines

4.3 The Entailment Logic of Median Spaces

Our results suggest that the notion of a critical family of basic properties plays a
key role for the understanding of voting by committees and thus of strategy-proof
social choice on single-peaked domains. We have already noted that a critical family
describes certain entailments among basic properties. Since a property space is uniquely
identified through its critical families, this means that the critical families describe a
property space in terms of its “entailment logic.” To illustrate, consider the line, labelled
by the natural numbers 1,...,m. The basic properties are H>; (“being greater than
or equal to j”) and H<j (“being smaller than or equal to k”) for appropriate j and
kEin {1,..,m}. All critical families have the form {H>;, H<;} for some k£ < j. The
interpretation is that “> 77 logically entails “not < k” whenever £ < j. Thus, the
critical family corresponds to the statement “for all z, z > j implies (not z < k).” In
this case, the entailment is “simple” in that the antecedent of the implication consists
of one basic property.

By contrast, consider the set X = {z1, ..., 2, } endowed with the vacuous between-
ness. For each z;, the set Hj = X \ {z;} corresponds to the basic property “being
different from 2;.” The critical family {HY,..., HS,} thus describes the following en-
tailment: “if an alternative is different from m — 1 distinct elements of X, it cannot
be different from the remaining m-th element.” The antecedent of this implication is
much more complex as it consists of m — 1 conjunctions of basic properties.

The characterization of median spaces as those property spaces for which all critical
families have cardinality two (cf. Proposition 4.1) thus says that median spaces are those
property spaces with a simple entailment logic. This singles out median spaces as a
fundamental class of property spaces.

As a more concrete illustration in a voting context, consider the following problem
of constitutional choice. Suppose that a set of countries, say the EU member states,
have to decide on the procedures for their collective choices, i.e. they have to decide on
their joint constitution. Specifically, consider the problem of determining on which of
the issues K = {1, ..., k} future decisions are to be made on the basis of majority voting.
Individual preferences are thus taken to be over subsets of K with the interpretation
that L »; L' if country i prefers majority voting over exactly the issues in L C K
to majority voting over exactly the issues in L' C K. The assumption of single-
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peakedness does not seem implausible in that context; it requires that, for each single
issue k, majority voting over issue k is preferred/not preferred independently of the
corresponding preference over other issues. Observe, however, that this excludes a
preference for the overall extent of majority voting (regardless on which issues), since
in that case majority voting for one issue would be a substitute for majority voting
over another issue.

In general, one cannot assume that the issues are independent from each other. In
other words, one has to account for the “entailment logic” of the underlying problem.
For instance, suppose that the issue k represents the joint defense policy of the coun-
tries, whereas k' represents their joint foreign policy. It is in general not possible to
decide on defense policy by majority voting without also deciding at least on some for-
eign policy issues by majority voting. In particular, the set of all feasible constitutions
will, in general, not be the entire power set 2%. The entailment “majority voting over
k = majority voting over k'” thus corresponds to a critical family. As long as all such
entailments are simple in the sense that their antecedent consists of only one basic
property, the resulting space is a median space. By Theorem 3 above, any well-defined
voting by committees procedure is applicable in that case.

4.4 Median Preference Domains

So far, we have described the preference domains on which possibility results emerge
indirectly through their underlying geometry as median spaces. We now show that one
can characterize these domains directly through appropriate convexity and separability
conditions. In this sense, all preference domains associated with median spaces are
economically meaningful in principle. Consider first the two basic instances of median
spaces, the line and the hypercube. On a line, and more generally on any tree, the set
of all single-peaked preferences coincides with the set of linear oderings that satisfy the
“convexity” restriction

o>y and (2,y,2) € T > y = 2 (4.1)

for all z,y, z with y # 2.

By contrast, it is easily verified that no linear ordering on the hypercube can sat-
isfy this condition for all triples z,y,z. On the other hand, the set of single-peaked
preferences on the hypercube is generated by the following “separability” restrictions
(cf. Sect. 2.5 above). Denote by H,—, := {H € H : 2 € Handy ¢ H} the basic
properties possessed by x but not by y, and say that x and y are immediate neighbours
if H,-, consists of one single basic property.* If H,—, = H,— = {H} for some H,
i.e. if (z,y) and (z,w) are two pairs of immediate neighbours separated by the same
basic property, then

Ty z=w. (4.2)

By Fact 2.2 above, any single-peaked preference on any property space satisfies these
separability restrictions. In general, however, they do not characterize the set of single-
peaked preferences; for instance, in the case of the line they are vacuously satisfied. The
following result shows that on a median space the set of all single-peaked preferences
is generated by the separability conditions (4.2) together with an appropriate selection
of convexity restrictions of the form (4.1).

40ne can show that in median spaces all neighbours are immediate neighbours, which is not true
in general.
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Proposition 4.3 Let (X,H) be a median space. There exists a subset ¥ C X3 such
that the set of all single-peaked preferences coincides with the orderings that satisfy the
separability restrictions (4.2) for any quadruple (x,y, z,w) such that Hy—y = Hooy =
{H} for some H, and the convexity restrictions (4.1) for all triples (z,y,z) € U.

As an illustration, consider the following figure which shows a median stable subset of
the product of two lines. Any single-peaked preference ordering verifies the convexity
condition (4.1) for the triple (z,y,2'), for instance. Indeed, z > y implies that the
peak of = is either x or z, from which the conclusion y = 2’ is immediate. By contrast,
condition (4.1) need not hold for the triple (z,y,w), since x > y and w > y if z is
the peak of »=. On the other hand, the quadruple (z,y,z,w) obviously verifies the
separability condition (4.2).

e [ X4

EII
<

Figure 6: Convexity and separability in a median space

A conclusion similar to that of Proposition 4.3 fails often outside the class of median
spaces. As an example, consider the 6-cycle; it is easily verified that any convexity
restriction of the form (4.1) is violated by some single-peaked ordering,? while the
relevant separability conditions are satisfied also by preferences that are not single-
peaked.

5 Conclusion

In this paper, we have defined a general notion of single-peakedness based on abstract
betweenness relations. We have shown that a social choice function is strategy-proof
on a sufficiently rich single-peaked domain if and only if it takes the form of voting
by committees satisfying the Intersection Property (Theorems 1 and 2). The concept
of a median space, in which every triple of social states admits a fourth state that is
between any pair of the triple, turned out to be fundamental for the existence of well-
behaved strategy-proof social choice functions. Median spaces are distinguished from
a number of different perspectives. Due to their universal consistency, median spaces
give rise to a maximally rich class of strategy-proof social choice functions (Corollary
4.1). Moreover, they are exactly the spaces that admit anonymous and neutral strategy-
proof social choice rules, amounting to issue-by-issue majority voting (Theorem 3), and
they guarantee the extendability of any partial committee structure (Proposition 4.2).
Finally, median spaces are characterized by their simple “entailment logic” (Proposition
4.1), and their associated domain of all single-peaked preferences can be exhaustively
described by a family of convexity and separability restrictions (Proposition 4.3).

5Concretely, for (z,y,z) € T, any single-peaked preference with peak opposite to y violates (4.1).
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Appendix 1: “Voting under Constraints” as a special case

The following clarifies the relation of our work to Barbera, Masso and Neme’s “Vot-
ing under Constraints” (1997). Let (X, %) be a property space with Sx. 1, as the
associated domain of all single-peaked preferences. Suppose that only a subset Y of
social alternatives is in fact feasible, and that voters’ ideal points are known to be
feasible (as pointed out by Barberd, Masso and Neme (1997), the latter assumption
is clearly restrictive). Formally, let D := {> |y : > € Sx 7, with peak of > in V}.
One can show that D consists exactly of the preferences on Y that are single-peaked
with respect to the restriction of T3, to Y which is the betweenness associated with
the relativization (Y,{H NY : H € H}) of the underlying property space to Y. Any
such domain D is therefore covered by our analysis. Barbera, Masso and Neme (1997)
consider the special case in which the underlying property space (X, #) is a product
of lines.%

Appendix 2: Proofs

Proof of Fact 2.2 Let > be single-peaked with repect to 7%, and denote by x* the
peak of >~; define H,:={H € H:2* € H} and Hy, := {H € H : z* ¢ H}. Obviously,
this partition of #H satisfies all required properties.

Conversely, let the partition H = H, U H,, satisfy (i) and (ii). It is straightforward
to verify that > is single-peaked with peak z*.

Proof of Fact 3.1 Suppose that z € fyy(§) and consider any y # z. By condition H3,
there exists H € H such that z € H and y € H°. By definition of fw, {i: § € H} €
Wg. By CS1, {i: § € H} = {i: & € H} € Wpye, hence by definition, y & fu(£).

Proof of Proposition 3.1 Since committees are by definition closed under taking
supsersets, voting by committees is monotone in properties by (3.3). Furthermore,
voting by committees is clearly onto since it satisfies unanimity.
Conversely, let f : X™ — X be onto and monotone in properties. For any H € H,
define
Wy :={W C N :3¢such that {i : {& € H} =W and f(¢) € H}.

Note that by monotonicity of f, the definition of Wx does not depend on the choice of £.
Since f is onto, Wy is non-empty. We verify that Wpr is closed under taking supersets.
Hence, suppose that W € Wy and W' O W. Choose £ such that W = {i : & € H}
and f(§) € H. Define ¢’ as follows: §; = & wheneveri € Worie€ N\W', and §; € H
if j € W' \W. Then, W' = {i: & € H} and, by monotonicity in properties, f(£') € H.
Hence, by definition, W’ € Wy.

Next, we verify properties CS1 and CS2. It is easily seen that W¢ & Wge implies
W € Wpg. To verify the converse implication, assume by way of contradiction that

8Tn the earlier working paper Nehring and Puppe (2002), we falsely asserted that any preference
domain of the form SX,TH , where (X, H) is an arbitrary property space, is isomorphic to an appropriate
relativized domain (in the above sense) embedded in a hypercube. However, this is true only when
Ty, satisfies an additional separation condition, known in the literature as the separation condition S3
(see van de Vel (1993)), which is slightly stronger than condition T5 above.
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W € Wy and W€ € Wpye. Choose € with {i : & € H} = W and f(¢) € H, and ¢
with {¢: & € H°} = W€ and f(¢') € H®. Consider ¢" defined by &' = ¢ fori € W
and & = ¢ for i € We. By monotonicity in properties, f(¢") € H and f(¢") € H¢,
a contradiction. This shows that W satisfies CS1. To verify CS2, let H C H' and
W € Wpy. Choose £ such that {i : & € H} = W and f(§) € H. Consider ¢ with
& =¢ fori € W and & € H'® for i ¢ W. By monotonicity in properties, f(¢') € H,
hence f(¢') € H', and thus W = {i : &} € H'} € Wg.

The proof is completed by noting that f = fyy. Indeed, by definition of W, one
clearly has f(§) € fw (&), but fyy is single-valued by Fact 3.1.

The following notation will be useful in the remaining proofs.

Definition (Segment) For all z,z € X, denote by [z,2] := {y € X : (z,y,2) € T}
the segment spanned by = and z, i.e. all states between z and z.

Proof of Proposition 3.2 Suppose f : X” — X is monotone in properties. Consider
an individual j with true peak &; who reports éj. Let H € H be any basic property
such that & € H and f(¢;,¢_;) € H. Clearly, {i : (§;,¢6_;); € H} C {i : & € H},
hence by monotonicity in properties f(¢) € H. This shows that f(€) € [¢;, F(&;,€-;)],
i.e. f(&) is between the true peak ¢; and the outcome f(éj, & ;). By single-peakedness,
this implies that f(&) >=; f(§;,&—;) whenever f(§) # f(&,&—j)-

Conversely, suppose that f is not monotone in properties; then there exist &, ¢’ and
H such that W := {i : & € H} CW' :={i: & € H}, f(§) € H but f(¢') € H.
Without loss of generality, we may assume that W’ = W U {j} for some individual
j ¢ W. Since f(&') is not between &} and f(¢), there exists by the richness condition
R2, a preference »~; € S with top ¢} such that f(§) =; f(¢'). Clearly, if ; is the true
preference of j, this voter will benefit from reporting £;. Hence, F'is not strategy-proof.

Proof of Proposition 3.3 The following proof is based on the proof of Barbera, Masso
and Neme (1997, Prop. 2) which it augments by a number of significant intermediate
steps. Some of these additional arguments seem to be needed for their result, too (see,
in particular, Facts A.1 and A.2 as well as Lemma A.2 below).

For F: 8™ — X and any voter i, define the “set of options given >;” by

0_i(>;) = {x € X : there exists »=_; € 8" ! such that F(>;,>_;) = z}.

Let now F be strategy-proof and onto. The proof of the “peaks-only” property proceeds
by induction over the number of voters. Thus assume first n = 2. From the strategy-
proofness of F' it is immediate that

F(>1,%2) = argmax,, . ,) =1= argmax,,, .y =2, (A1)

i.e. F(>1,>2) is the best element in 0;(>;) with respect to > ;.
Denoting by 7(>) € X the peak of >, one has

[T(>-1) :T(>‘2) :l‘] :>F(>‘1,>-2) =2x. (A2)
For verification, suppose that z is the common peak of =1 and 5. Since F'is onto, there
exist > and >} such that F(>{,>5) =z, i.e. z € 01(>5). By (A.1), F(>1,>}) = =,

i.e. © € 02(>1), hence again by (A.1), F'(>1,>2) = z.
The following fact plays a key role in the proof of Lemma A.1 below.
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Fact A.1 Suppose that y € 02(>1) and y' € [y, 7(>1)], then y' € 02(>1).

To verify this, we can assume that y’ is a neighbour of ¥; from this the general claim
then follows by induction using the transitivity condition T3. Thus, assume by way of
contradiction that y' € [y, 7(>1)] is a neighbour of y with y' & 02(>=1). By the richness
condition R1, there exists > such that y' > y > w for all w & {y,y’}. By (A.1),
F(>1,>) =y, and by (A.2), F(>,>) = 3'. By the single-peakedness of »1, voter 1
can therefore manipulate at (>, >) via >, a contradiction.

Lemma A.1 If 7(>1) = 7(>}), then o_1(>1) = o_1 ().

Proof of Lemma A.1 We first prove the result for n = 2. Suppose, by way of
contradiction, that z = 7(>1) = 7(>]) and y € 02(>1) but y € 02(>'). By (A.2), one
must have y # z. First, we show that y cannot be a neighbour of z. Otherwise, one
could choose, by R1, a preference > with y > = = w for all w ¢ {y,z}; by (A.1) one
would obtain F(>1,>) = y and F(>},>) = x, but then voter 1 could manipulate at
(>1,>) via >1.

Thus, y is not a neighbour of z. Choose a neighbour y’ € [z,y] of y. By Fact A.1,
y' € 02(>1). Suppose that also y’ € 02(>1). By R1, there exists a preference >’ with
y ="y =" wfor all w ¢ {y,y’'}. By (A.1), F(>1,>") =y and F(>|,>') = y'. But by
the single-peakedness of »1, we have z = y' =1 y; therefore, voter 1 can manipulate
at (>1,>') via »=. Thus, we must have y' € 02(>1) and y’ & 02(>}). Now replace y by
y' and repeat the argument until a neighbour of z is reached to derive a contradiction.

To prove the assertion for general n, define a social choice function £ : §? — X
by E(>1,>2) := F(>1,>2,...,>2). It is easily verified that E inherits the strategy-
proofness and voter sovereignty from F. Hence, by the above arguments,

[7(=1) = 7(=1)] = 0y’ (=1) = 05 (~1).
The proof is thus completed by showing that, for all =1, 0¥ (=) = of’;(>1). Clearly,
one has oF (1) C o', (=1). To show the converse inclusion, take any = € o', (>1) and
choose =3, ..., =, such that x = F(>1,>2,...,5). Consider any preference > with
7(>) = z. By the strategy-proofness of F,

T=F(1,0,=n) = F(~1,c 0, n-1,=) = .. = F(~1,=, ..., =) = E(>1,>),

hence = € 0% (>1). This concludes the proof of Lemma A.1.

For the case n = 2, we can now complete the proof of the “peaks-only” property.
Indeed, that property follows at once from the fact that

[02(>-1) = 02(>-11)] = F(>—1, >2) = F(F’l, >-2). (A3)

To verify (A.3), assume by way of contradiction, that z = F (1, =2) # F(>],=2) = '
By assumption there exist = and >’ such that F(>1,>') = 2’ and F(>},>) = z. But
then voter 2 can either manipulate at (>1, >2) via =’ (if 2’ =2 x), or manipulate at
(>1,>2) via > (if 2 > 2).

The proof for n = 2 is thus complete. For the induction argument, we need the
following definition and lemma.

Definition (Gated set) A subset Y C X is called gated if, for all © € X, there exists
an element y(z) € Y such that y(z) € [z,y] for all y € Y, i.e. such that y(z) is between
x and any element of Y. The element «(z) is called the gate of Y to x.
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Lemma A.2 For all =1, the set o_1(>1) is gated.

Proof of Lemma A.2 Given any element z € X choose = with 7(>) = z, and
set v(z) := F(>1,>,...,>) = E(>1,>). Assume, by way of contradiction, that z €
0_1(>1) is such that vy(z) & [z, 2]. By the richness condition R2, there exists >’ with
7(>') = z and z >’ y(z). By the strategy-proofness of E and (A.1), v(z) # E(>1,>");
but this contradicts the “peaks-only” property of E.

Proof of Prop. 3.3 (cont.) For given >, define
G(>'27 sty >n) = F(>_17 sty >'TL)7

and denote Y := 0_1(>1). Clearly, G is strategy-proof with range Y. Let Gy denote
the restriction of G to the profiles of preference orderings in S that have their peak in
Y. Now observe that for any > € S with peak z, the restriction > |y is single-peaked
(with respect to the induced betweenness on Y') with peak v(z). Moreover, the set of
all restrictions is a rich domain on Y. Hence, by the induction hypothesis Gy satisfies
“peaks-only” and can therefore represented by a voting scheme g : Y~ ! =Y.

Fact A.2 G(>2,...,=n) = g(7(&2), ..., 7(&R)), where & = 7(>=;).

This follows from 7(§;) = argmaxy- >; and the observation that, by strategy-proofness,
G(>'27 ceey >‘n) = GY(>_2 |Y; vy |Y)

We now complete the proof by deriving a contradiction from the assumption that
there exist =1 and >} with 7(>>1) = 7(>}) =: = such that

Yy =F(=1, 72, n) # F(=1,72, 0 =0) = ¢
By Lemma A.1, o_1(>1) = 0o_1(>}) =: Y. Define G, Gy and g as above, and analo-
gously, G', G% and ¢'. By Fact A.2,

Yy =9(v(&), V(&) £ 9 (v(&2), s v(&n)) =¥,

and by Propositions 3.1 and 3.2, g and ¢’ are voting by committees on Y. Choose
H € H|y with y € H, y' € H¢ and, without loss of generality, v(z) € H. Let
W:={i:~v(&) e H}, W = {i:v(&) € H}, and consider p = (12, ..., ),) Where

o y if e

TE @) if g W
Since g and ¢’ are voting by committees, and since any basic property jointly possessed
by y' and y(x) gets unanimous support, we have {g(n),g'(n)} C [¢',v(z)]. Moreover,
W = {2,..,n} \ W' is winning for H in g, and W' is winning for H¢ in ¢', hence

g(n) € H and ¢'(n) € H.
We show that ¢'(n) # y'. Otherwise, choose =; with 7(>;) = 7; to obtain from

g(n) € ly',v(x)] and g(n) # ¥/,
gn) = F(=1,%2, ..., 7n) > F(>1, %2, .., 70) =,

in contradiction to the strategy-proofness of F. Now repeat the argument replacing '
by 2’ := ¢g'(n) € H¢. The desired contradiction is then obtained by induction since the
segment [2',y(z)] is strictly contained in [y, y(z)].

26



Proof of Proposition 3.4 Suppose fyy is consistent, and let G = {G4,...,G;} be
a critical family. For j = 1,...,1, consider any selection W; € Wg,. We will show
ﬂlj:le # () by a contradiction argument. Thus, assume that I’Wg:le = (). Then,
for all i € N, there exists j; such that ¢ ¢ Wj,. For each 14, pick an element §; €
G$, N (Njz:Gj) = Njzj,G; (observe that the latter set is non-empty by definition of
a critical family). By construction, if ¢ € Wj, then j # j;, hence { € G;. This
shows that, for all j, W; C {i : & € G;}. Therefore, {i : & € G;} € Wg,, hence by
(3.3), fw(&i,...,&) € G for all j = 1,...,1. However, this contradicts the fact that
{G1,...,G} is a critical family.

Conversely, suppose fjy is not consistent, i.e. for some ¢, fyy(€) = 0. By (3.2) and
CS1, this implies that N{H € H : {i: & € H} € Wi} = (. We show that fyy cannot
satisfy the Intersection Property by contradiction. Thus assume fyy does satisfy the
Intersection Property. Pick a critical family {G1,...,G;} C{H e H: {i: & € H} €
W} By the Intersection Property, ﬂlj:l{i :& € G} #0. Let ig € {i : & € Gy} for
all j =1,...,1. But then &, € G; for all j, contradicting the fact that {G1,...,G;} is a
critical family.

Proof of Fact 4.1 Suppose, by way of contradiction, that z,y, z admit two distinct
medians m; # mo. By H3, these can be separated by a basic property H such that
my € H and my € HC. Clearly, either H or H¢ must contain at least two elements of
{z,y,z}, say {z,y} C H. But then m, ¢ [z,y] in contradiction to the fact that it is a
median.

Proof of Proposition 4.1 The equivalence of (ii) and (iii) is immediate since a
critical family with more than two elements violates the pairwise intersection property;
conversely, any minimal family of basic properties violating the pairwise intersection
property must contain at least three elements and is by definition a critical family.

To prove the implication “(i) = (ii),” take any collection {Hy,..., H;} C H such
that Hi N Hy, # 0 for all k,h € {1,...,1}. We verify the pairwise intersection property
by induction. For [ = 2 it holds trivially; thus assume [ > 2. Let A:= Hy N ...N H;_».
Choose z € ANH;_1,y € AN H; and z € H;_; N Hy, the first two intersections being
non-empty by induction hypothesis, the latter by assumption. Consider the median
m = m(z,y, z); since A is convex, [z,y] C A, hence m € A. Similarly, m € H;_, and
m € Hy, hence m € N!_, Hy,.

The converse implication “(ii) = (i)” is verified as follows. For any pair z,y, de-
note by Hy, oy == {H € H : {z,y} C H}, and observe that N"H, .3 = [7,y]. Now
simply note that, for any triple z,y, 2z, the family H, ,; UH(, .3 UH , -} has pairwise
non-empty intersections. By assumption, its intersection is non-empty; since this inter-
section is contained in each of the segments [z,y], [z, 2] and [y, z] it contains a median
of the triple.

Proof of Theorem 3 The implication “(i) = (ii)” follows from Propositions 3.4 and
4.1, as shown in the main text; the implication “(ii) = (iii)” is trivial. It remains to
verify the necessity of the median property for the consistency of issue-by-issue major-
ity voting. Thus, suppose that (X,H) is not a median space. Specifically, let z,y, z
be such that [z,y] N [z, 2] N [y,z] = 0. For odd n > 3, consider issue-by-issue majority
voting, i.e. Wy = {W : #W > n/2} for all H. Assume that voter’s peaks are dis-
tributed as evenly as possible among the three points x, y and z. Thus, for instance,
if n is divisible by 3, assume that exactly one third of the peaks are at z, y and z,
respectively. Then, by definition, fw(£) € [z,y] N [z, 2] N [y, z]; but the latter set is
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empty, hence issue-by-issue majority voting is not consistent.

Proof of Proposition 4.2 By the universal consistency of median spaces, any commit-
tee structure satisfying CS1 and CS2 is consistent. By induction, it therefore suffices
to show that, for any H € H, a partial committee structure on F can be extended
to a partial committee structure on F U {H, H°}. We distinguish three cases. First,
assume that H C G for some G € F; then define Wy :=N{Ws : G € F and H C G}.
If, on the other hand, for no G € F, H C G, but for some G' € F, G' C H, then
set Wy := U{Wg : G € Fand G C H}. Finally, if for no G € F, H C G, and for
no G' € F, G' C H, then assign an arbitrary committee Wy to H. In each case,
define Wgy- according to (3.1) so that the pair (H, H¢) satisfies CS1. Condition CS2
is satisfied by construction, thus W is a partial committee structure on F U {H, H¢}.

For the proof of Fact 4.2, we use the following lemma; in its statement, medS
denotes the smallest median stable set that contains S (the so-called “median stabi-
lization” of S). Lemma A.3 is a straightforward reformulation of van de Vel (1993,
Lemma 6.20, p.130); therefore its proof is omitted here.

Lemma A.3 Let (X,H) be a median space, and let S C X. Then x € medS if and
only if for each pair H H' € H with x € HN H' one has SNH N H' # (.

Proof of Fact 4.2 By Lemma A.3, it is clear that, for any median stable subset Y C X,
the set Y\ (H N H') is again median stable. To show that any median stable set has
the required form, consider an arbitrary median stable subset Y C X, i.e. medY =Y.
Let X\ Y = {z1,...,2,}. Lemma A.3 implies that for any z; there exist H;, H] with
x; € H;yNHj such that YNH;NH} = (. Hence, Y = (...(X\ (H1NH))\..)\(H,.NH}).

Proof of Proposition 4.3 Define ¥ C X3 as the set of all triples (z,y, z) such that
y € [z,2], and for some H,G € H, Hyo—y = {H}, Hy-- = {G} and {H, G} is critical.
First, we show that any single-peaked preference ordering > satisfies the convexity
restriction (4.1) for any such triple. Using Fact 2.2, > y implies that H € #,.
Moreover, one has G € H, since {H, G} is critical; this implies y > z, again by Fact
2.2.

To prove that, conversely, any linear preference ordering satisfying the stated re-
strictions is single-peaked, we use the following fact (cf. van de Vel (1993)). Let z,y, z
be a triple of distinct elements in a median space such that y € [z, z]. Then, there ex-
ists a “direct path” through y that connects x and z. Formally, there exists a sequence
Yo, Y1, -, Y1, Yi+1 with the following properties: yo = z, yi41 = 2, ¥ € {y1,...,y1}, and
for all j =0, ...,, y; and y;41 are immediate neighbours such that y;41 € [y;, 2].

Now consider any linear preference ordering > with peak z that satisfies the stated
convexity and separability restrictions. We will show that y = z for any y # z with
y € [z,z]. As above, let yo,...,y1+1 be a direct path through y connecting = and z.
For all j, denote by ©; the set of immediate neighbours of y; in [y;,z]. We show by
induction that, for all j,

y; > w for all w € ©;. (A4)

By transitivity of >, (A.4) implies y; > z for all j, since z = y;4+1 € ©;. For j = 0,
(A.4) holds trivially since yo = x is the peak of >. Thus, assume that (A.4) holds for
j—1, and consider y; along with an immediate neighbour w € ©;. Let H,,_,—,, = {H}
and Hy;—, = {G}. There are two possible cases. First, if {H,G¢} is critical, then the
triple (y;—1,y;,w) belongs to ¥ since, by construction, y; € [y;—1,w]. By induction
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hypothesis, y;—1 > y;, hence by (4.1), y; > w. Otherwise, if {H, G} is not critical,
there exists, using the median property, an immediate neighbour v of y;_1 in H N G°.
Since v € ©;_1, we have y;_; > v by the induction hypothesis. This implies y; > w
by the separability restriction (4.2) corresponding to the quadruple (y;—1,v,y;,w).
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