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Abstract. FEconomies of scope, conceptualized here as cost complementarities, arise
from synergies in the production of heterogeneous goods. It is shown that synergies
can be accounted for in terms of shared public inputs (roughly) if and only if synergies
decrease as the scope of production increases; this case of “substitutive” synergies is
arqued to be typical. As an application, we consider a model of “learning in steps,” in
which the public inputs represent different knowledge items.
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1 Introduction

Economies of scope arise from synergies in the production of heterogeneous goods.
The classical Marshallian notion of joint production (Marshall (1890/1920)) explains
instances of such synergies by the fact that some factors of production are pure public
inputs. That is, once the inputs have been used for producing one good, they become
costlessly available for use in the production of others. We refer to this as the joint
public input interpretation of economies of scope. In this paper, we demarcate the
domain of applicability of the joint public input explanation to economies of scope by
studying the entailed structure of synergies, i.e. the pattern of marginal cost reductions
due to the production of related goods. Our main conclusion is that synergies can be
accounted for in terms of pure public inputs essentially if and only if synergies decrease
as the scope of production increases (cf. Theorem 2.2). We also show that the opposite
case of increasing synergies is very restrictive (see Theorem 2.3).

A prime example motivating our work is knowledge as a factor of production. Our
analysis is applicable to a notion of ezplicit knowledge as the possession of specific pieces
of information or understanding, as exemplified by the idea that knowledge items can
be patented, or listed in a curriculum. This contrasts with a notion of implicit knowl-
edge as skill acquired through practice, such as the diagnostic competence of a medical
doctor honed by long experience. In the economics literature, such implicit knowl-
edge is often addressed under the label of “learning by doing” and frequently viewed
as a major source of increasing returns to scale (Arrow (1962)). While learning by
doing, as increasing returns to scale more generally, raises difficult issues about the na-
ture of competition and equilibrium analysis, the phenomenon itself can be adequately
captured using conventional tools; for many purposes, even a one-input/one-output
cost function with decreasing marginal costs will do. Like implicit knowledge, explicit
knowledge is an important source of increasing returns due to its nonrivalrous nature as
an input: the use of specific know-how for producing one good does not preclude its si-
multaneous use in the production of other goods. The increasing returns due to explicit
knowledge naturally take the form of economies of scope. By definition, economies of
scope involve multiple outputs. Moreover, explicit knowledge as an input is inherently
heterogeneous, since by its very nature something known cannot be learnt again. In
other words, a particular knowledge item can be used as an input only in quantities 0
or 1. Thus, the natural framework to model production based on explicit knowledge
involves multiple inputs as well as multiple outputs. To zero-in on the combinatorial
questions posed by the multi-dimensionality of the good space, we work in a discrete
setting in which both inputs and outputs are formalized as sets of goods rather than
vectors of continuous quantities.!

A cost function is said to be characterized by economies of scope if marginal costs
decrease as more goods are produced. Technically, economies of scope will thus be
identified with submodularity of the cost function. In the literature, this strong notion
of economies of scope is also known under the name of “cost complementarity,” in
contrast to the weaker requirement of subadditivity (see Panzar and Willig (1981) and

'Tn this respect, our approach follows Scarf’s (1981) analysis of production with indivisibilities (see
also Scarf (1994)). A discrete model seems particularly appropriate in the context of economis of
scope, since due to the associated non-convexities of the technology, production decisions (whether
profit-maximizing or socially optimal) have a significant discrete combinatorial component even in a
continuous setting in the subproblem of which goods to produce in positive quantities.



Panzar (1989)). We adopt the stronger notion in this paper for its richer structure,
without disputing that the weaker one may be the more directly relevant for equilibrium
analysis. The local extent of economies of scope, i.e. the reduction in the marginal
cost of producing a particular good x brought about by the additional production of
another good y, will be referred to as the synergy between z and y. Note that the
synergy between x and y typically depends on the set of goods otherwise produced;
submodularity can be paraphrased as the requirement that the synergy between two
goods is always non-negative, no matter what other goods are being produced.

Cost functions derived from joint public inputs are always submodular; conversely,
we show that any cost function satisfying a stronger condition of “total submodularity”
can be represented mathematically as arising from the use of joint public inputs. The
economic content of total submodularity is that the synergy between any pair of goods
is decreasing as the scope of production increases; such decreasing (self-dampening)
synergies are referred to as “substitutive” economies of scope. It turns out that the
case of substitutive economies of scope is more fundamental than and presumably
far more prevalent than the formally symmetric case of increasing (self-reinforcing)
synergies, which is shown to be remarkably restrictive. Thus, we arrive at the main
conclusion of the paper that the step from the general notion of economies of scope as
cost complementarities to the more structured joint public input interpretation is small,
being largely a matter of assuming sufficient reqularity.

The public input interpretation is fruitful especially because it opens the possibility
to model economies of scope in a flexible way through appropriate assumptions on the
pattern of inputs. We illustrate this point with a variety of basic examples in Section
2; in Section 3, we develop in greater detail a model of economies of scope based on
the use of explicit knowledge.

As a simple example illustrating the basic concepts of substitutive synergies and
public inputs, consider the production of economics research papers, say a note on
equilibria in extensive form games z, a theoretical analysis of entry deterrence y, and
an applied I0-paper z. A researcher estimates the cost (= effort) of writing the three
papers as half a year of work; she also deliberates on the cost of writing any subset of the
projected papers. Her estimate of the costs, measured in weeks of concentrated work,
is as follows: c¢({z}) = 8, c({y}) = 15, c({z}) = 13, c({z,y}) = 17, c({z,2}) = 20,
c({y,z}) = 24, and c({z,y,2z}) = 26. As is easily checked, the example exhibits
economies of scope, i.e. the marginal cost of any given paper decreases as more other
papers are also written. Moreover, the economies in the example are substitutive,
i.e. the synergy between two papers decreases when a third paper is also written. For
instance, the synergy between x and z, i.e. the reduction of the marginal cost of writing
x by also writing z is given by c¢({z}) — [¢({z, z}) — ¢({z})] = 1 if y is not written, and
by c({z,y}) — c({y}) — [c({z,y,2}) — c({y,z})] = 0 if y is also written. In fact, the
specified cost function is totally submodular, hence admits a representation in terms
of joint public inputs which intuitively correspond to common ideas and tools shared
by the different papers. For instance, the papers x and y may share the use of some
game theoretic tools that the researcher has yet to learn. Similarly, there will be some
overlap of concepts and ideas needed for the two I0-papers y and z.

The representation in terms of public inputs emerges from imputing specific fixed
costs to the acquisition of the public inputs, i.e. the shared concepts and ideas in our
example. Specifically, for each A C {z,y, z}, denote by A4 the fixed cost of developing
all concepts (“inputs”) that are jointly employed by exactly the papers in A (again



measured in weeks of concentrated work). There exists a unique assignment of fixed
costs A4 for all A such that for any set S of papers, the given cost ¢(S) equals the total
cost of all inputs that are needed for some paper in S, formally ¢(S) = ZAmS;ﬂz) Ag. In
the example, the unique assignment is given by: Az, .3 =1, Az} =95, Az} =0,
Ay,y = 3, Moy = 2, Ayyy = 6, Ay = 9. In general, the fixed cost assignment is
obtained from conjugate Moebius inversion, as explained in detail in Section 2 below.
Crucial for our approach is the observation that the structure of synergies is reflected by
the pattern of the associated public inputs. For instance, Ay, .3 = 0 means that there
are no concepts common to the note on extensive form equilibria x and the applied
IO0-paper z that are not also shared by the theoretical paper on entry deterrence y.
This corresponds to the fact that there is no remaining synergy between = and z once
y is being written.

Given a totally submodular cost function, conjugate Moebius inversion can of course
only secure the formal possibility of a joint public input interpretation; the mathemat-
ically identified inputs need not always be economically meaningful. Indeed, even if
the real production process involves impure (i.e. rivalrous) inputs, the resulting cost
function may very well be totally submodular. In that case, the inputs derived from
conjugate Moebius inversion, assumed to be public by construction, lack economic
meaning. In Section 4, we show that it is nonetheless frequently possible to verify the
absence of rivalrous inputs based on information on the cost function alone, thereby
ensuring the economic meaningfulness of the joint public input interpretation.

The use of (non-conjugate) Moebius inversion is standard in the related literature
on cost sharing since Shapley’s seminal contribution (1953); occasionally, one also finds
references to its conjugate form (see Moulin (1988) and Young (1994)). As our main
mathematical contribution, we sharpen this tool by providing a novel characterization
of the conjugate Moebius inverse in terms of the higher-order derivatives? of a cost
function (Theorem 2.2). This is economically relevant since the first derivative describes
marginal costs and the second derivative the local synergies; moreover, positivity of the
third derivative corresponds to decreasing (“substitutive”) synergies.

The body of the paper is organized as follows. The following Section 2 is divided
into five subsections. Subsection 2.1 introduces the fundamental concept of a discrete
cost function characterized by cost complementarities (positive synergies). Subsection
2.2 discusses the distinction between “compementary” (increasing) and “substitutive”
(decreasing) synergies. It is shown that any cost function arising from joint production
with public inputs exhibits substitutive synergies. Using conjugate Moebius inversion
as the key technical tool, a converse statement is derived in Subsection 2.3. Specifically,
it is shown that under a mild regularity condition any cost function characterized by
substitutive synergies admits a joint public input representation. In Subsection 2.4,
it is shown that the case of substitutive synergies is the far more relevant case. By
consequence, the joint public input interpretation of economies of scope seems to be
applicable under very general circumstances. A set of basic examples is presented in
Subsection 2.5.

As a more detailed application, we study in Section 3 a model of “learning by
insight” in which economies of scope arise from different activities requiring the same
elementary skills. The proposed “stepwise learning model” is especially parsimonious
in that every public input can be uniquely assigned to one activity, representing the

2strictly speaking: higher-order differences.



characteristic “learning step” associated with that activity. Based on a characterization
in terms of the entailed structure of synergies, we argue that the “stepwise learning
model” can serve as a reasonable and useful benchmark model in the context of learning
based on explicit knowledge.

In the final Section 4, we discuss the problem of determining whether production
is exclusively based on pure public inputs, or whether some inputs are rivalrous. All
proofs are collected in an appendix.

2 Substitutive Economies of Scope

Let X be a finite set of goods that can be potentially produced by a firm. For any
subset S C X denote by ¢(S) the cost of producing exactly the goods in S; these
costs are summarized in a cost function ¢ : 2¥ — R. The elements of X are sometimes
interpreted as heterogeneous individual objects, e.g. cars, or as types of goods (“product
lines”) distinguished by specific know-how, e.g. different car models sharing a basic
common design. Under the latter interpretation, costs arise from the need to acquire
the capability to produce goods belonging to the same product line, and increasing
returns are due to shared component knowledge such as overlapping R&D benefits.
Throughout, ¢ is assumed to be monotone in the sense that ¢(W) < ¢(S) whenever
W C S (“producing more can never be cheaper”), and normalized so that ¢(f)) = 0.3

2.1 Economies of Scope as Synergies

Economies of scope describe the reduction of marginal costs due to the production of
other goods. Such synergies between goods can be described by second-order derivatives
of the cost function. We define the (first) derivative? of ¢ at S with respect to z by

Ve(S) :=e(SU{z}) — ¢(S).

Thus, V,c(S) is the marginal cost of producing = given that S is already produced. In
order to emphasize this interpretation of the first derivative, we also write m,(S) for
V.c(S). Clearly, for each x € X, m,(-) is again a real-valued function on 2X. A crucial
role in the following analysis will be played by its derivative with respect y which we
also refer to as the cross-partial derivative of ¢ with respect to {z,y}:

Viegye(S) = Vy(mg(S)) = Vy(Vae(S))
= [e(SU{z,y}) — c(SU{y})] — [e(SU{z}) — c(S)]

A cost function is said to be characterized by economies of scope, i.e. decreasing
marginal costs, if the cross-partials are always non-positive. Equivalently, the syn-
ergy between any = and y,

SNy} (S) = =V iz g3e(5), (2.1)

i.e. the reduction of the marginal cost of producing = due to the production of y, is
always non-negative. It is easily verified that non-negativity of synergies is equivalent

3Formally, there are thus no fixed costs. Whenever we nevertheless refer to “fixed costs” in the
following, strictly speaking we mean “quasi-fixed costs.”
4strictly speaking: first-order difference.



to submodularity of the cost function, i.e. to the condition that, for all S, W C X,
(SUW) +e(SNW) < e(S) + e(W).

The object under study is thus the class of all submodular cost functions on 2% .5

In writing down equation (2.1) one notes at once that the synergy between x and
y depends on the set S of goods already produced. This dependence is significant.
Independence of S would require that

Vizy1e(S) = Viaye(S')

for all S, S’ that do not contain z or y. Such independence holds if and only if all third
derivatives are zero, in which case the cost function will be referred to as quadratic.
Despite its attractiveness from a computational point of view, a quadratic model turns
out to be inappropriate in most cases. Typically, synergies depend on S in a significant
and economically meaningful way.

To illustrate the role of the third derivative, consider a simple example of a seller
delivering to a finite number of stores in a linear city. Suppose that there are n
equidistant stores, so that X = {1,...,n}. A seller located at the edge of town (at 0)
wants to serve these stores. For simplicity, assume that the cost incurred by supplying
store x € X consists in the transportation cost of driving from the starting point 0 to
store z plus some constant cost a > 0 per store for unloading. With transportation
costs proportional to the distance, the cost of serving store x is simply ¢({z}) = a + z.

|~ syngep(S) |
| |
| —-« mm(S) —

“TIT 1 [ T

1

max .S Y T n—1 n

Figure 1: Serving stores in a linear city

Since in serving store z the seller has to drive beyond all stores y < z, the marginal
cost of serving one of these is a once store z is served. The cost of supplying any set
S C X of stores is given by ¢(S) = a - (#5) + max S, i.e. the costs of unloading plus
the transportation cost of serving the farthest store in S. If z ¢ S, marginal costs are
thus m,(S) = a+ [ — max S]4, where [z]4 is short for max{z,0}. Synergies are given
by

Syn{z,y}(‘s) = [min{x, y} — max S]+;

(see Figure 1). In particular, the synergy between z and y is always non-negative,
confirming the presence of economies of scope. To illustrate, suppose that store z =
max S is already being served. The marginal cost a + (z — z) of supplying any farther
store © > z is reduced by y — z whenever an intermediate store y with z < y < z is
also served. The dependence of syng, ,1(S) on S is transparent: the reduction in the

5In identifying economies of scope with submodularity, we assume a given (short-term) technology.
In particlular, our analysis does not take into account the effect of taking envelopes, i.e. of choosing
technologies.



marginal cost m,(S) due to serving an intermediate store y with maxS < y < z is
smaller whenever max S is larger. In other words, syny, ,1(S) is decreasing in S: for
all z,y and all S,5’,

S g SI = syn{m’y}(S) 2 Syn{x7y}(5'). (22)

The case of decreasing synergies in the sense of (2.2) will be referred to as the case of
substitutive synergies: synergies become weaker the more synergies are already being
exploited. Since syng, ,1(S) = =V, 43¢(S), (2.2) is equivalent to monotonicity of the
cross-partials V, ,3¢(-), and hence to non-negativity of the third derivative of the cost
function,®

V{m,y,z}c(') = VZ[V{m,y}c()]

This simple example demonstrates that the structure of synergies is in general com-
plex. In particular, it shows that the qualitative behavior of synergies is closely related
to the qualitative behavior of the third derivative of the cost function. A fundamental
distinction concerns the sign of the third derivative. As outlined above, non-negativity
of the third derivative everywhere corresponds to substitutive (decreasing) synergies.
The polar case of complementary (increasing) synergies is also conceivable. However,
we shall argue that these cases are not symmetric (see Section 2.4 below): substitutive
synergies will figure much more prominently in our analysis.

How can we understand the presence of substitutive synergies?

2.2 Substitutive Economies of Scope due to Joint Public Inputs

The following example is meant to illustrate the notion of joint public inputs central to
the further development of the theory. Consider the following very stylized description
of the cost structure of producing BMWs (a well-known German car make).” First, to
be able to produce any BMW z at all a certain amount Fj, of firm-wide overhead has
to be incurred. Developing a specific product line, say the 5-series of BMW, requires
large expenditures Fy,|(,y. Similarly, designing a particular model, such as the 525td,
involves additional costs Fio(,). Finally, the actual production of the individual car
has unit costs Kpq(,)- Thus, producing a single BMW 2 (think of 2 € X as one car of
a particular model) has total cost

c({7}) = Fon + Fpi(a) + Fino(z) + Kmo(a)-

For instance, suppose one 525td is being produced. Then, the marginal cost of pro-
ducing a second 525td is Kp95:q. By contrast, the marginal cost of, say a 528i, is
Fso8i + K598i. More generally, the total cost of producing a set S of cars ¢(.5) is given
by the sum of overhead costs, the (quasi-)fixed costs of any product category in .S (line
or model) plus the marginal costs of each individual car.

In this example, the presence of economies of scope is due to joint public inputs,
i.e. inputs required by several goods (cars) that become freely available once used for
one single good (car). For instance, the cost of producing a 525td and a 528i jointly

6Observe that the value of V{a,y,23¢(S) is independent of the order of taking derivatives.

"While some readers may be less fond of BMWs than we are, they may nevertheless appreciate the
pedagogical value of the example, especially of the crispness with which BMW’s nomenclature conveys
the qualitative structure of its product space.



is smaller than the sum of the cost of producing each of the two cars separately since
both cars share common inputs, namely those required for developing the 5-series.

In general, the cost structure of production with joint public inputs can be described
as follows. Let 2 be a set of public inputs with given prices p,,, w € Q. For any w € Q
let h(w) € X denote the set of those goods which require input w. The total cost of
producing the subset S of goods is thus given by

(S)=" > pe

wih(w)NS#0

Note that each public input occurs only once in the sum on the right-hand side, since it
becomes freely available for all outputs once it has been used by one. In the following,
it will be convenient to identify inputs w with their “extensions” h(w) C X, i.e. with
the corresponding sets of goods that require these inputs. In particular, we will refer
to a set A of goods as a “public input” whenever there is an w € Q such that A =
h(w), i.e. whenever there is some w-input that is required exactly by all goods in A.
Henceforth, a public input is thus simply a certain subset of goods, and the set of all
public inputs is a collection of such subsets. The price of the “input” A C X is then
given by the aggregate cost of all w-inputs required exactly by the goods in A:

Ag = Z Duw,

w:h(w)=A

with Z@ := 0 by convention. Expressing costs in terms of the A4 one thus obtains for
all S,

c($)= > (2.3)

ACX:ANS#D

We can view X as a measure on 2% and write A(A) := 3", 4 A for any family A C 2%,

Note that, in general, there will be many subsets A for which A4 = 0, and observe that

the family of all public inputs is given by the support A := {A C X : Aq # 0} of A
By (2.3), one obtains

ma(S) = c(SU{z}) —e(S) = AN{A: 2 € AC SY)) (2.4)

and

where S¢ denotes the complement of S in X. The marginal cost of z at S is thus
given by the aggregate cost of all inputs that are required by x but not already used
by some good in S. Similarly, the synergy between z and y at S equals aggregate
cost of all inputs common to 2 and y that are not required by any element of S. In
particular, it is clear from (2.4) and (2.5) that any cost function of the form (2.3)
is monotone and submodular, due to the non-negativity of A\. Moreover, it is also
evident from the right-hand side of (2.5) that synergies are decreasing in S, i.e. that
the economies of scope are substitutive. More generally, the higher-order derivatives
of any cost function of the form (2.3) have alternating sign, beginning with a positive
sign for the first derivative (see Theorem 2.2 below). Such cost functions will be called
monotone and totally submodular. Equivalently, the class of totally submodular cost
functions can be characterized by the property that the absolute value of any higher-
order derivative is decreasing. Formally, for any W = {z1,...,2,,} C X, define the



derivative of ¢ with respect to W at S recursively by Vic(S) := Vg, (Vw\{a,.1¢(5)).
A monotone cost function is totally submodular if and only if, for all non-empty W,
and all S,S’,

SCS8 = |Vwe(S)| > |Vwe(S")]. (2.6)

Observe that submodularity corresponds to the case #W = 1, and substitutivity of
synergies to the case #W = 2. We will refer to monotone and totally submodular
cost functions as characterized by regular substitutive economies of scope. The term
“regular” seems justified by the fact that the economic content of a particular cost
function appears to reside in its first three derivatives.®

2.3 Implicit Joint Inputs Obtained from Conjugate Moebius
Inversion

Consider now a monotone and totally submodular cost function. The above procedure
for aggregating product-group specific fixed costs can be inverted, as shown by the
following result.

Theorem 2.1 (Conjugate Moebius Inversion) For any set function ¢ : 2% — R
there exists a unique measure \ on 2%, the so-called conjugate Moebius inverse, such
that (2.8) holds, i.e. such that for all S,

c($)=M{ACX:ANS#0H= > A,

ACX:ANS#D

where Mg := M({A}). The measure X has the following representation. For all A,

A= 3 e(S0) - (-
SCA

Moreover, X is non-negative if and only if c is totally submodular.

The first part is a standard result in combinatorics and the theory of non-additive
probabilities (see Rota (1964), Chateauneuf and Jaffray (1989)). The second part, also
well-known, follows from Theorem 2.2 below.

The non-negativity of the conjugate Moebius inverse (henceforth: c.m.i.) allows us
to interpret it as a cost decomposition. In the BMW example above the cost decom-
position was exogeneously given, as total costs were computed based on presupposed
fixed costs specific to certain groups of products. However, even if the public inputs
are not part of the physical description of the technology, the decomposition (2.3) can
still admit an economic interpretation in terms of imputed fixed costs, with the values
A4 representing the fixed costs of the public inputs “imputed” to exactly the goods in
A. Theorem 2.1 thus entails that, up to conditions on derivatives of order > 4 (“reg-
ularity”), any cost function characterized by substitutive economies of scope admits
such a cost decomposition in terms of imputed fixed costs.

&Note the analogy to the theory of choice under risk, in that the behavioral content of a von
Neumann-Morgenstern utility function almost exclusively resides in its first three derivatives (for the
economic content of the third derivative, see Kimball (1990)). Furthermore, also in this context,
functions satisfying the continuous analogue of (2.6) (“mixed utility functions”) have been found to
play a distinguished role, see Caballé and Pomansky (1996).



The use of (non-conjugate) Moebius inversion is standard in the literature on cost
sharing since Shapley (1953). Occasionally, one also finds reference to its conjugate
form as defined here. For instance, Young (1994) refers to cost functions with the
representation (2.3) as “decomposable.” Both Young (1994, p. 93) and Moulin (1988,
p. 140) note that in the totally submodular case, the Shapley value admits a particularly
simple and intuitive representation. It amounts to assigning, for any implicit input, an
equal cost share to each good that uses it: Sh(z) =} 45, ﬁ.

As a formal result, Theorem 2.1 can of course only secure the logical possibility of a
joint public input interpretation. The mathematically identified inputs need not neces-
sarily be economically meaningful; see Section 4.1 below for an example. Nonetheless,
Theorem 2.1 establishes the remarkable generality of the joint public input language
for talking about economies of scope as if originating from joint public inputs. More-
over, in Section 4.2 we provide a simple sufficient condition under which the economic
meaningfulness of the imputed inputs is secured.

As a first illustration, consider again the example of serving stores in the linear city.
Serving a store z requires the input “driving from 2 — 1 to z.” This input is in fact
shared by all stores that are farther out than z. Hence, for each z, the set {z,...,n} is
a public input with Ay, . .} as the transportation cost of driving from z — 1 to z. In
addition, each store x requires an idiosyncratic input {z} with Ag,} = a representing
the cost of unloading. The c.m.i. of the cost function ¢(S) = a - (#S) + max .S is thus
obtained by setting

1 if A=Az, ...,n} for z < n,

a if A={z} for x < n,
1+a if A={n},

0 otherwise.

Aa =

In other words, the cost decompositon of the function ¢(S) = a-(#S) +max S in terms
of joint public inputs is given by imputing one cost-unit to each set that consists of all
stores that are farther away from the starting point than some given store z, and an
unloading cost of a to each single store (see Figure 2). Note that the fixed cost Ay,
imputed to the farthest store subsumes both the transportation cost from n — 1 to n
and the unloading cost at n.

@@ ..... @@

Figure 2: Extensionally identified public inputs in the linear city

The following result shows that the c.m.i. simultaneously describes the cost function
and all its derivatives. Since derivatives play such a central role in the analysis of cost
functions, it shows at a purely mathematical level the importance of the c.m.i.

Theorem 2.2 Let ¢ : 2X — R be a set function with c.m.i. X\. For all S and all
non-empty W C X,

Vwe(S) = (=1)#VH . \{A: W C A C S59)).



Taking W = A and S = A¢ in Theorem 2.2 one obtains the following simple represen-
tation of the c.m.i.

Corollary 2.1 Let ¢ : 2%X — R be a set function with c.m.i. \. For all A,
Aa = VAC(AC) . (—1)#A+1.

Observe that both results apply to arbitrary set functions. In particular, the equiva-
lence of non-negativity of A and total submodularity of ¢ is an immediate consequence
of Theorem 2.2.°

Theorem 2.2 can be used to demonstrate the restrictiveness of quadratic cost func-
tions, thereby underlining the role of third and higher-order derivatives. Suppose that
for all 2,y and all S with SN {z,y} = 0, the synergy syny, ,1(S5) between z and y is
strictly positive but does not depend on S. By Theorem 2.2, this implies that the sup-
port of the corresponding c.m.i. A consists exactly of all one- and two-element subsets
of X, ie A ={{z,y}:z,y € X}. In particular, one obtains by (2.3), for all .S,

() > 3 3 elfa)), (2.7)

zES

and more generally, ¢(SUW) > 13 _<m,(W). Note that (2.7) is easily violated when
many goods in S share a common input, e.g. when there are significant overhead costs.
Hence, modelling a cost function as quadratic entails a strong quantitative limitation
on the extent of synergies.

Analogously, a vanishing (k + 1)-th derivative means, by Theorem 2.2, that all
public inputs are shared by at most k goods, which implies ¢(S) > 1+ 3, . c({z}) for
all S.

2.4 The Privileged Status of Substitutive Synergies

As we have seen, the applicability of the joint public input interpretation, i.e. the
interpretation of the c.m.i. as a cost decomposition, is limited to the case of substi-
tutive economies of scope (decreasing synergies). This condition is not as restrictive
as it may appear, since substitutivity of synergies is economically more natural than
their complementarity. This intuition is confirmed by the fact that complementary
(i.e. increasing) synergies impose strong restrictions on the overall extent of synergies,
as expressed by the following inequality. For all z,

Z Syn{z,y}(w) S C({x})'lo
yeX\{z}

In terms of total cost, complementary synergies entail the same strong restriction
as the quadratic model (cf. (2.7)):

9Choquet (1953, Sect. 14 and 26) introduced totally submodular set functions in terms of the
alternating sign of the higher-order derivatives (thus calling them “alternating of infinite order”), and
suggested that they occur more frequently and seem more useful than totally supermodular ones (belief
functions). He did not state Theorem 2.2 nor Corollary 2.1; both seem to be new.

OFor verification, let X = {x,y1,...,4m}, and observe that 221 SYD{a,y, (X \ Az Y15 04)) =
mg(0) — ma (X \ {z}) < e({z}). The stated inequality thus follows from the assumption of increas-
ing synergies. Note that, by contrast, in the substitutive case one can only deduce the inequality

Y exiin) Vo1 (0) < (n— 1) - c({z}).
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Theorem 2.3 Let ¢ : 2¥ — R be monotone and submodular. Furthermore, assume
that, for all z,y, syn{%y}(-) is increasing, i.e. that the third derivative of ¢ is non-
positive everywhere. Then, for all S,

o(8) > 3 3 elfa)).

z€eS

By comparison, substitutive synergies entail no analogous restriction beyond mono-
tonicity (i.e. ¢(S) > max,es c({z}) > # Y zesc({z})). The analogy to functions on
the real line may be instructive. If f : [0,00) — R is increasing and concave, then it is
not possible that its third derivative is strictly negative everywhere.!! By contrast, it
is perfectly possible that its third derivative is strictly positive everywhere.

As we have already argued in the context of quadratic cost functions, the restrictions
described above will be undesirable in many cases, for instance they are easily violated
when overhead costs are significant. From this we conclude that the case of substitutive
synergies is the by far more relevant case in applications.

2.5 Examples

The cost decomposition in terms of conjugate Moebius inversion allows one to model
cost functions through appropriate a priori restrictions on the pattern of the public
inputs. In this subsection, we present two simple and basic examples; in Section 3, we
develop as a more elaborate example a model of stepwise learning.

Consider again the production of BMWs as described in Subsection 2.2 above. A
distinctive feature of that example is that public inputs are nested: for any two product-
groups corresponding to the public inputs A and B, respectively, one has A C B or
B C A whenever AN B # (. In other words, public inputs do not (non-trivially)
overlap. The following figure illustrates this property.

5-series

525td

528i

3-series

Figure 3: A hierarchy of public inputs

In general, a family A C 2% will be called a (tazonomic) hierarchy if for all A, B € A,
AN B # () implies (A C B or B C A). Accordingly, a cost function ¢ : 2% — R will be
called hierarchical if the support A of its c.m.i. is a hierarchy. As is evident from Fig. 2
in Section 2.3 above, the cost function ¢(S) = a - (#S5) + max S used in the example of
serving stores in the linear city is also hierarchical. As another instance of hierarchical
structure, consider the introductory example of writing economics research papers. In

1 This is easily seen by considering the first derivative f’. By assumption, f’ is non-negative and
decreasing everywhere. Clearly, in this case f’ must have a convex part.
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this context, a reasonable starting point is to deduce the public inputs from the Journal
of Economic Literature classification system for research articles. The assumption is
thus that each (sub-)category of articles, such as “D Microeconomics,” “D2 Production
and Organizations,” or “D24 Production,” represents a public input corresponding to
the common concepts and ideas associated with that category. Provided that any
research paper can be unambiguously assigned to exactly one subcategory at the lowest
level (such as, e.g. “D24 Production”), the resulting family of public inputs exhibits a
hierarchical structure. The interest in simple patterns of inputs such has a hierarchical
organization lies in the fact that such patterns often correspond to specific functional
forms of the cost function. For instance, by Theorem 3.1 in Nehring and Puppe (2002),
a cost function is hierarchical if and only if the marginal cost of producing = given
a set of goods S equals the minimal marginal cost of x given any single good in S,
i.e. my(S) = minges my({y}).

As a different example of additional qualitative structure, suppose that goods are
described by two quality dimensions. E.g., cars may be described by their body z; €
X1 = {coupe,sedan, station-wagon}, and the horsepower of their engine zo € X5 =
{150, 200,250} (see Figure 4 below). A “good” z € X = X; x X, is thus a type of
product rather than an individual physical object, and ¢(S) describes a firm’s cost of
being able to produce the range of goods S. We picture production of goods as involving
elementary production processes. Costs arise from the capability of performing the
production processes required by any good in the range. Economies of scope originate
in different goods requiring the same production processes, hence sharing the same
elementary competencies (= public inputs).

250 hp z
200 hp z 4
150 hp
coupe sedan  station-wagon

Figure 4: A two-dimensional good space

In this context, it seems natural to assume that the corresponding inputs have the
form of “rectangular” subsets of X; x X5: if  and z share a common input, then so
does any good y that is “intermediate” between z and z in both quality dimensions.
In the present example, the natural orderings describing technological “betweenness”
are given by 150-hp < 200-hp < 250-hp on X3, and by coupe < sedan < station-
wagon on X,, as depicted in Figure 4. The rectangular shape of public inputs with
respect to these oderings implies, for instance, that a 200-hp sedan y would share all
elementary competencies that are commonly needed for producing a 250-hp sedan z
and a 200-hp coupe z. As is easily verified, this entails that syn{x’z}(S) = 0 for any
S 3 y, i.e. the marginal cost of (being able to) producing z is not further reduced by
providing the ability to produce z given that the production processes required by y
are already available. Thus, the a priori assumption of the rectangular shape of public
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inputs yields the testable implication that there is no remaining synergy between two
goods = and z once an intermediate good y is already being produced. The example
is an instance of the “product of lines” and can be analyzed in more detail using the
tools provided in Nehring (1999) and Nehring and Puppe (2002).

3 A Model of Learning in Steps

We now consider an application to a context in which costs arise from the need to ac-
quire certain abilities or knowledge items. Economies of scope (“knowledge economies”)
are due to different abilities requiring common skills such as shared R&D know-how.
As a specific example, consider a high-school math textbook containing a set X of
problems. We imagine a student who tries to solve certain subsets S of problems.
For this, the student has to invest a certain amount of effort ¢(S), measured in time
units, say. Economies of scope arise from different problems sharing certain “atomic”
concepts. For instance, suppose that the solutions of problems z and y require solv-
ing a quadratic equation. Then, having absorbed the logic of Vieta’s formula for the
solutions of quadratic equations, the marginal cost of working through problem z is
reduced once problem y has been solved.

Our framework assumes that mastery of problems is 0-1-valued. Either the student
is able to solve a problem, or she is not. Once a problem is mastered, it is fully available
(as a pure public input of sorts) for future learning. Therefore, we refer to the following
model as a model of learning in steps, or “learning by insight.” We will also assume
that the total cost of absorbing a set S of knowledge items does not depend on the
sequence in which the items are absorbed.!?

Consider a set X of knowledge items and a cost function ¢ : 2% — R with ¢(S)
quantifying the effort needed to “learn” the items in .S, measured in time units. The
following relation plays a central role in our analysis. Say that an item y presupposes
an item z if the marginal effort of learning x is zero whenever y has already been
absorbed; formally, define a presupposition relation >, on X from the cost function by

y>.x e forall S>y, e(SU{z}) =c(5). (3.1)

For instance, understanding how to solve a quadratic equation presupposes the concept
of square root. By (3.1), this means that the marginal cost of understanding the logic
of square root is zero whenever the method of solving quadratic equations has been
fully absorbed. As is easily verified, for any set function ¢, the induced presupposition
relation >, is reflexive and transitive, hence a preorder. To further illustrate, consider
Figure 5 below which represents the presupposition relation among the basic “knowl-
edge items” of this paper’s Section 2. In Figure 5, nodes represent the knowledge
items, such as the definition of a discrete cost function (item 1), the logic of conjugate
Moebius inversion (item 3), the argument for the priviledged status of substitutive syn-
ergies of Section 2.4 (item 6), and so on. An arrow from item z to item y means that
y presupposes z. For instance, understanding the representation of a cost function in
terms of imputed fixed costs (item 7) presupposes the concept of total submodularity
(item 5). As expected, the main message of Section 2 (item 8: “regular economies of
scope admit a public input interpretation”) presupposes every other item displayed.

12Certainly, this is a restrictive assumption. In an unpublished former version of this paper (Nehring
and Puppe (1999)), we show how the analysis can be generalized allowing for path-dependent costs.
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Figure 5 here

Denote by zt:= {y : y >, z} and zl:= {y : x >, y} the “up-set” of all items that
presuppose x and the “down-set” of all items presupposed by zx, respectively. Also, let
Sti={ye X :y >,z for some z € S} and S|:={y € X : z >. y for some z € S}.

Fact 3.1 Let ¢ : 2¥ — R be a set function with c.m.i. \. Then, the support A of A
consists of sets of the form Af, i.e. A = AT for all A € A.

Thus, a public input A € A contains with any item z € A all items y that presuppose
z. Unless the presupposition relation is very rich, its knowledge imposes only loose
restrictions on the family of public inputs. From a modelling perspective, greater par-
simony is desirable. We will now show that there is a well-defined “most parsimonious”
model consistent with the presupposition relation >.; the model is very tractable and
does not seem to be excessively restrictive.

First, observe that in the present context of learning a typical cost function will
satisfy the following condition of strict monotonicity.

Strict Monotonicity For all z and S, ¢(S U {z}) > ¢(S) whenever S N zt= 0.

Strict monotonicity states that the marginal effort of learning z is strictly positive
whenever no item that presupposes z has already been absorbed. Using Fact 3.1,
strict monotonicity is easily seen to imply z1€ A for all z € X, i.e. A contains all
up-sets x1.!* The following stepwise learning model requires conversely, that only
sets of the form z1 are relevant public inputs; in other words, it assumes that one
can associate to any knowledge item x a unique “atomic concept” x71 that is specific
to x and any more advanced item. As a simple example, consider the knowledge
item = = 5 (“regular economies of scope”) in Figure 5. Absorbing (“learning”) that
particular concept requires the notion of total submodularity which also underlies the
more advanced items 7 and 8. The “atomic concept” associated with item x = 5 is thus
represented extensionally by the public input zt= {5,7,8} (“total submodularity”).

The stepwise learning model is the most parsimonious model consistent with >,
and it can be characterized by an independence condition that identifies the source of
synergies. The condition says that synergies between two items = and z can occur only
if they share a common presupposition that has not yet been learnt.

Synergy through Shared Presuppositions (SSP) If syn{x7z}(S) # 0, then there
exists y € S} such that z >,y and z >, y.

Proposition 3.1 A set function c : 2X — R satisfies SSP if and only if the support
of its c.m.i. satisfies A C {zt: x € X}. In this case one has, for all z,

At = Vac((@)®) = Vee(zd \{z}) = c{y : y <c 2}) — c({y 1 y <c z}). (3.2)

In particular, any monotone set function satisfying SSP is automatically totally sub-
modular.

The hallmark of the stepwise learning model is thus the associating of a unique “mar-
ginal” input x1 with every good z. Concretely, by (3.2), the value Ay is the marginal
effort of understanding z given that all items y # z that z presupposes have been

13Tndeed, by strict monotonicity and Theorem 2.2, V c((21)¢) = A({A : 2 € A C 21}) > 0, and by
Fact 3.1, \({A: 2 € A C a1}) = Ay
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learnt. Intuitively, the input z 1 may be viewed as the characteristic learning step
associated with knowledge item z.

To illustrate the content of Proposition 3.1 graphically, consider a cost function on
the set N x N of pairs of natural numbers (or some large finite subset of it) such that
(y1,y2) >¢ (21, 22) © y1 > o1 & y2 > xo. Figure 6 below depicts the shape of a typical
input with and without condition SSP, respectively.

A=zt

/
LI

Figure 6: Typical inputs with and without SSP

The strength of condition SSP depends on the structure of the induced presupposi-
tion relation. Specifically, consider the two extreme cases of a complete presupposition
relation (weak order) and an empty presupposition relation, respectively. In the former
case, SSP is automatically satisfied, since by Fact 3.1 any public input is the form =1 for
some = € X; in the latter case, SSP is equivalent to the condition A C {{z}:z € X},
i.e. any public input must be a singleton.

In the present context of stepwise learning, it can be argued that condition SSP is
without real loss of generality by appropriate enlargement of the domain: if necessary,
simply add “auxiliary knowledge items” that are shared as inputs by several items as an
intermediate output in its own right. To illustrate this, consider again Figure 5 above.
Does the cost function on the domain of knowledge items in that figure satisfy SSP,
i.e. does Figure 5 represent a stepwise learning model? Presumably not. To see this,
consider e.g. the claim of the priviledged status of substitutive synergies (item 6) and
the concept of total submodularity (item 5). Suppose that every item presupposed by
these two (i.e. items 1,2 and 3) has already been absorbed. Our intuition is that there
still is a positive synergy between items 5 and 6: syn; 3({1,2,3}) > 0, in violation of
SSP. Indeed, one common learning step that is needed for understanding both items 5
and 6 is the concept of substitutive synergies itself and the representation of conjugate
Moebius inversion in terms of derivatives (Theorem 2.2). Adding these two items (as
items 12 and 14 in Figure 7 below) accounts for the positive synergy between 5 and 6.
Note that the inclusion of new items may necessitate the addition of further items if the
resulting presupposition relation is to satisfy condition SSP. For instance, the positive
synergy between the added items 12 and 14 must be accounted for by the inclusion
of the notion of third derivative (item 10), and so on. Completing Figure 5 in this
manner, we finally arrived at the representation in Figure 7 below, which presumably
conforms to the stepwise learning model. In Figure 7, we also included the arguments
surrounding the restrictiveness of the quadratic model, as this is probably also helpful
to appreciate the basic messages of Section 2, such as items 6 and 8. The method
of enlarging the domain of a cost function to achieve compatibility with the stepwise
learning model exemplified here with the help of Figures 5 and 7 can be applied in full
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generality: for any cost function ¢ on X, there exists an extended cost function ¢ on
some domain Y O X such that ¢ coincides with ¢ on X and such that ¢ satisfies SSP
(see Nehring and Puppe (1999) for the details).

Figure 7 here

The stepwise learning model has been presented as a useful benchmark model in
the context of learning. It has been analyzed in some detail to illustrate the gen-
eral modelling strategy of specifying structured families of inputs. A formal theory of
step-by-step learning has been developed over the last fifteen years by Doignon and
Falmagne in their theory of “knowledge spaces” (see Doignon and Falmagne (1985) for
a first statement, and Doignon and Falmagne (1999) for a comprehensive treatment
and references to related work by other authors). The central object of their theory
is a knowledge space which can be viewed as a domain of knowledge items ordered
by a generalized presupposition relation.'* While there are some interesting mathe-
matical connections to our work, the intent and details are quite different: focusing
on knowledge assessment, Doignon and Falmagne do not postulate a cost function of
learning, and do not represent the order structure of knowledge items in terms of atomic
“learning steps” (public inputs) as in our present account.

4 The Interpretation of Implicit Inputs:
Real versus Merely Imputed

When do the fixed cost components imputed via conjugate Moebius inversion admit
an economic interpretation and when are they only mathematical constructs? This
is the question addressed in this section. In Subsection 4.1, we study the production
of multiple units of a homogeneous good and find that in this case the fixed cost
imputation via conjugate Moebius inversion lacks an economic interpretation. Indeed,
when economies of scope reduce to economies of scale, any combination of different
units of the good shares a specific (mathematically identified) input that is not shared
by all other units. Therefore, in Subsection 4.2, we derive a condition that guarantees a
substantive joint public input interpretation by requiring the absence of “scale effects.”

4.1 Multiple Units of Homogeneous Goods
4.1.1 Omne Good: Economies of Scale

Consider now the special case of a completely symmetric cost function: A cost function
c: 2% = R will be called completely symmetric if costs depend only on the number of
goods produced, i.e. for all S, ¢(S) = f(#S) for some function f : {0,1,...,n} - R,
where n = #X. Such a cost function describes the production of a homogeneous
output. In this case, economies of scope specialize to economies of scale.

Say that a function f : {0,1,...,n} — R is monotone and totally concave if its
higher-order derivatives have alternating sign, i.e. if for all [ > 1,

vOF@E) - (-1 >0,

The methodology has been implemented in a computer educational system “Aleks” (for “Assess-
ment and Learning in Knowledge Spaces”) covering the high-school curriculum in basic arithmetic,
algebra and geometry; it is available on the internet under www.aleks.com.

16



where Vf(i) := f(i+1) — f(i), and VW f(5) :== V [VU=1 f(i)] for I > 1. The following
result is an immediate consequence of Theorem 2.2 above.

Fact 4.1 Let c: 2% — R be a completely symmetric cost function. Then, ¢ is mono-
tone and totally submodular if and only if f is monotone and totally concave.

In the special case in which total costs are given by fixed costs plus constant marginal
costs, i.e. f(i) = b+ ai for i > 0, the c.m.i. is given by Ax = b, A(;3 = a for all z, and
A4 = 0 for all other A; here the set of imputed inputs A has clear economic meaning.
In the case of decreasing marginal costs, on the other hand, the c.m.i. has typically full
support, i.e. A = 2X.1> While this suggests that there is a complex interference of syn-
ergies when the production of a homogeneous good exhibits economies of scale, it also
shows that the completely symmetric case does not lend itself easily to a substantive
joint public input interpretation. Indeed, full support means that any combination of
different (units of) goods corresponds to a particular public input.

4.1.2 Many Goods: Distinguishing Economies of Scope and Scale

Suppose that the good space X can be partitioned into different types of goods. In this
case there are two distinct sources of costs: “fixed costs” of acquiring the capability
of producing goods of a certain type, and “variable costs” of producing goods of a
particular type in various quantities. For instance, fixed costs may correspond to R&D
costs of developing a range of product lines as in the BMW example above.

Formally, let X = Ugecy X with the X} pairwise disjoint. The distinction between
fixed and variable costs is formally captured by the following additively separable func-
tional form of the cost function. For all S,

c(S)=FHkeY :SNXp # 0} + Y cu(#(S N X)), (4.1)

key

where F : 2¥ — R represents fixed costs, and the ¢ : {0, ..., # X} — R represent
the variable cost functions for goods of type k. A cost function that admits such a
separable representation will be referred to as decomposable.

Proposition 4.1 A cost function ¢ : 2% — R is decomposable in the sense of (4.1) if
and only if it satisfies the following two conditions.

(i) For allk €Y, z,y € Xy, and z € X, m.(S) = m.(S U {z}) whenever S >y, and
(ii) For all S;W, [#(SN Xy) = #(W N Xy) for all k] = ¢(S) = ¢(W).

Moreover, the functions ¢ and F are uniquely determined up to a normalization of
cr(l) forallk €Y.

Condition (i) states that once a single unit of some type k is produced, increasing the
output of this type entails no further reduction of the marginal cost of producing goods
of any other type j. Condition (ii) states that costs only depend on the number of units
produced of each type.

The function F' captures potential economies of scope, while the ¢; capture po-
tential economies of scale. This clear-cut dichotomy, which is due to condition (i),
seems appropriate in certain contexts such as that of R&D expenditure; it may not be

150bserve that the c.m.i. of a completely symmetric cost function is completely symmetric as well,
i.e. for all A, A4 only depends on the cardinality of A.
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acceptable in others. For example, in a context of learning by doing in which types
represent classes of (costly) activities and individual “objects” within a type instances
of the same activity, the marginal cost of a repetition of some activity j will decrease
only gradually as a similar activity k is performed more often.

The function ¢ is totally submodular whenever F' is totally submodular and each ¢y,
is totally concave. Since the joint public input interpretation is less compelling within
a homogeneous type, one would often assume total submodularity only of F', applying
the methodology in effect only to the economies of scope aspect of c.

4.2 Economies of Scope without Scale Effects

We now provide a sufficient condition for a substantive public input interpretation;
roughly, it requires that there be no “scale effects.”

For the remainder of this section, we consider the class of all totally submodular
cost functions ¢ : 2X — R that can be written in the form

=Y e, (42)

wEeN

where each w € () corresponds to a real input that may be rivalrous or not, and
¢, : 2% — R describes the costs of acquiring it in sufficient quantity. As in Sect. 2
above, denote by h(w) C X the set of goods that use input w, formally, h(w) = {z :
co({z}) > 0}. For each w € Q, ¢, is assumed to be monotone, submodular and of one
of the following two types.

Type I:  for all z,y € h(w): Vqycw({y}) = 0.

Evidently, the type I cost functions correspond to the pure public (i.e. nonrivalrous)
inputs. If ¢, is not of type I, we require #h(w) > 2 and the following condition.'6

Type II:  for all z,y € h(w) and all S with {z,y} NS = §: syn?’m’y}(S) > 0,

where synfL v denotes the synergy between x and y with respect to the cost function c,,.
The cost functions of type II are associated with the rivalrous inputs since the synergy
between any pair of goods that use w remains positive no matter what other goods are
being produced. The following concrete functional form motivates our formulation of
type II cost functions. For all S, let

%m=m<2%) (4.3)

z€S

Here, ¢, denotes the quantity of input w used by good z, and f,(-) is the cost of
acquiring the input in different quantities. A cost function of the form (4.3) is of type
II whenever f,, is strictly concave. For instance, let g, be the metres square of the
body of a car z that have to be painted, and f, the hours needed to do the painting
job. In this case, strict concavity of f, occurs, e.g., due to “learning by doing.”
Evidently, for a cost function ¢ of the form (4.2), the family {h(w) : w € Q} of
real inputs does, in general, not coincide with the family A of imputed inputs since the

16To motivate the requirement #h(w) > 2, consider a cost function ¢, with h(w) = {z,y} and
syn{zﬁy}(@) > 0. While failing to represent a nonrivalrous input, ¢, can be decomposed into three
nonrivalrous cost functions with inputs {z}, {y}, and {z, y}, respectively. Therefore, the case #h(w) =
2 can be excluded in the definition of type II cost functions.
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latter are always purely public by construction. In the pure case, on the other hand,
the two families do coincide.

Fact 4.2 Let ¢ be a totally submodular cost function of the form (4.2). If all ¢, are of
type I, then A = {h(w) : w € Q}.

Given a cost function ¢ of the form (4.2), is there a way to infer from knowledge
of ¢ alone whether all inputs are pure public inputs, or whether some are impure
(i.e. rivalrous)? We will now show that one can formulate a simple sufficient condition
in terms of the presence of strictly positive synergies. Then, we will argue heuristically
that the condition comes close to being necessary.

Say that two goods = and y are linked if syny, ,1(S) > 0 for all S with {z,y}NS = 0.
Furthermore, a clique of goods is a subset W C X such that any pair in W is linked.
The relation “is linked to” defines a graph, the linkage graph on X; a clique is a com-
plete induced subgraph. Also, note that by Theorem 2.2, two goods z and y are linked
if and only if {z,y} € A.

Definition The linkage indez I(c) of a cost function ¢ is defined as the maximal cardi-
nality of a clique of the induced linkage graph.

We will now show that I(c) = 2 implies that all inputs must be purely public. For the
converse, we shall argue that a low index makes it likely that one in fact faces the pure
case.

Suppose that w is rivalrous; then h(w) is a clique in the linkage graph of ¢,. For
any pair x,y € h(w) one has,

syng, 3 ({2,939 = D synf, , ({2,9}%).
wEeN

Since, by submodularity of all c,,, syn{, , > 0 for all w, we have syng, n{zy}e) >
if and only if syn{xw}({x,y} ) > 0 for at least one w. Since synergies (with respect
to ¢) are decreasing by the assumed total submodularity of ¢, we have syn{x’y}(S) >
syny, 3 ({z,y}) for all S C {z,y}¢. Thus, any pair z,y in h(w) is linked, whence

l(c) > #h(w) > 2

By contraposition, this shows that I(c) = 2 is sufficient for the pure case, i.e. the
absence of rivalrous inputs.

To illustrate, consider the following examples. In the homogeneous case of Section
4.1.1, when ¢ is totally symmetric and strictly submodular, the entire set X of goods
forms a clique, hence I(c) = #X. More generally, if ¢ is decomposable in the sense
of (4.1) with all ¢ strictly concave, the cliques include all sets X}, therefore I(c) >
maxy #Xy. By contrast, for any hierarchical cost function ¢, each good is linked to
at most one other good, hence I(¢) < 2. By consequence, a hierarchical organization
of the family A of imputed inputs guarantees the absence of “scale effects” by ruling
out rivalrous inputs w. The same conclusion applies if the good space has a product
product structure and all inputs are rectangular sets as in the second example in
Sect. 2.5 above. Indeed, if all public inputs are rectangular, the linkage graph is given
by the graph depicted in Figure 4, or a subgraph of it. While a good may thus be
linked to several other goods, none of these can be linked to each other. Hence, the
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corresponding linkage index cannot exceed 2. Finally, in the stepwise learning model
again [(c) < 2 due to the specific structure of the support A.

Our heuristic argument for the “almost necessity” of a low value of I(c) for the pure
case is based on the intuition that if an input w is used by more than one good, it
is used by more than just one other good. In fact, it seems hard to find examples of
(real) inputs that are used by exactly two different goods; goods of that kind would
have to be “made for each other,” such as right and left shoes, for instance. Thus,
#h(w) will typically be large. In the pure case, this implies by Fact 4.2 that only few
pairs goods are linked. By consequence, one will find even “moderately sized” cliques
only under special circumstances.!” Hence, I(¢) will be small if all inputs are purely
public. On the other hand, in the impure case I(c) is bounded below by the largest
cardinality #h(w) of a rivalrous input, which will typically be of (at least) moderate size
if the total number of goods is sufficiently high. Thus, a small linkage index is a good
indicator that all inputs are nonrivalrous and that the public input interpretation is
economically meaningful, while a moderate or large linkage index indicates the presence
of some rivalrous input.

Appendix: Proofs

Proof of Theorem 2.2 The proof proceeds by induction over #W. For W = {z},

V.e(S) = e(Su{z}) —c(S)
= M{4:A>3z2,AnS=0})
= M{4d:z € ACSY).

Next, let #W > 2, and suppose the given formula applies to all derivatives of order
< #W. Then, for any z € W,

Vwe(S) = Vi (Vingape(S))
= Vw\{a3le(SU{z}) — c(S)]
= (“DFVD{A:(W\{z}) CAC(Su{z})})
“A({A4: (W\{z}) C ACSY)]
= (“DFVHIN{A: (W\{z} CAC Sz € A})
= (“)FVHAN{A: W CACSY).

17Note, however, that even if any given good z is linked to other goods with low probability,
the number of potential cliques of a given cardinality grows fast as the number of goods increases.
Nevertheless, the intuition that few edges imply the absence of sizeable cliques can be made formally
precise.
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Proof of Theorem 2.3 Let ¢ : 2¥ — R be monotone, submodular with non-positive
third derivative. The restriction of ¢ to any S C X has these same properties; hence,
for the proof of Theorem 2.3 it suffices to show that

o(X) > 2 3 elfa)). (A1)

zeX

Define the average cost function f : {0,...,#X} — R by f(i) := #S#(Z) > sesi <(5),
where S(i) := {S C X : #S = i}. Note that f(0) = 0, n- f(1) = > .y c({z})
and f(n) = ¢(X), where n := #X. Consider the derivative V f defined by Vf(i) :=
fli+1) = f(i). By assumption, Vf : {0,...,n — 1} — R is positive, decreasing and
concave. By Jensen’s inequality, one has for allt =1,...,n — 1,

n—1—14

fi+1) = f() =ViQ) > -V £(0).

n—1

Summing these inequalities, one obtains

Fm) = UG +1) - )] 2 (Z $> f) = 35,

- . n—1
i=0 1=0

ie. (A.1).

Proof of Fact 3.1 We show that, for any A € A and any z € A, 21C A. Fix any
x € X, and consider the family B, := {4 : 2z € A,y >, z withy ¢ A}. It will be
shown that A4 = 0 for all A € B, by induction over #A. First recall that by (2.4), for
all S,
c(SU{z}) —c(S)=A{A:2 € ACSY). (A.2)
Let A € B, with #4 = 1, i.e. A = {z}. By assumption, one has e({z}° U {z}) —
c({x}¢) = 0; hence, taking S = {z}° in (A.2) one obtains A,y = 0.
Now consider any A € A, and suppose that Ag = 0 for all B € B, with #B < #A.
By assumption, ¢(A° U {z}) — ¢(A°) = 0; hence, using (A.2) with S = A°, one obtains

0=AX{B:2€ BCA})=XX{B:xz € BCA})+ A4,

thus, by the induction hypothesis, Ay = 0.

Proof of Proposition 3.1 We prove that SSP implies A C {z1: 2z € X} by a
contradiction argument. Thus, suppose that A € A is not of the form A = z1 for some
x € X, and assume that A is of minimal cardinality with that property. Let z € A
be a >.-minimal element of A. By Fact 3.1, A D z1. By assumption there exists
z € A\ (21). By (2.5) and minimality of A one obtains,

syng, .3 (A°) = A{B : {z,2} C B C A}) = A\4.

By assumption, A4 # 0, hence by SSP there must exist some y ¢ (A°)} with z >, y
and z >, y. But y & (A°)] in particular implies y € A, which is not possible by the
choice of z and z.
Conversely, suppose that A C {zf: € X}. This implies
syng, .3 (5) = A{A:{z,z} CACSY)
= Myhz>cy,z>.yandy ¢ Sl}),
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and hence SSP. Finally, formula (3.2) follows at once from A C {zf: 2z € X}.

Proof of Proposition 4.1 For each k € YV, fix ¢, (1) arbitrarily such that 0 < ¢;(1) <
c({zx}), where x;, € X},. For any k choose x, € X}, and define F : 2¥ — R as follows.
ForallY' CY,
FY') i=c({ar ke Y'}) = > (D).
key”
By condition (ii), this does not depend on the choice of the z;. The functions ¢ are

inductively defined as follows. Choose any set S that contains exactly i > 2 elements
of Xy, and let z;, € SN Xj. Then, set

ek (i) = cr (i = 1) + [e(S) — (S \ {ax})].

By conditions (i) and (ii), this definition does not depend on the choice of S and zy.
It is easily verified that the functions F' and ¢ yield the desired decomposition.

Proof of Fact 4.2 By definition of h(w), one has ¢, ({z}) = 0 for all z ¢ h(w), and
by the submodularity, in fact V,c,(S) = 0 for all ¢ h(w). Moreover, if ¢, is of
type I, one has ¢, ({z,y}) — co({y} = 0 for all z,y € h(w), by definition. This implies
cw({z}) = cw({y}) =: ¢ for all z,y € h(w), and therefore, again by submodularity,
c,(S) = ¢ for any S with SN h(w) # @. From this it is immediate that the c.m.i. of ¢,
is given by Ap() = ¢ and A4 = 0 for all A # h(w).
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