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Abstract. A theory of choice under uncertainty is proposed which removes
the completeness assumption from the Anscombe—Aumann formulation of
Savage’s theory and introduces an inertia assumption. The inertia assump-
tion is that there is such a thing as tHatus quo and an alternative is
accepted only if it is preferred to thstatus quo. This theory is one way of
giving rigorous expression to Frank Knight's distinction between risk and
uncertainty.
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1. Introduction

Many years ago, Frank Knight (1921) made a distinction between risk
and uncertainty. A random variable is risky if its probability distribution is
known, uncertain if its distribution is unknown. He argued that uncertainty
in this sense is very common in economic life and he based a theory of profit
and entrepreneurship on the idea that the function of the entrepreneur is to
undertake investments with uncertain outcome.

The author is grateful to Martin Shubik for encouragement and long discussions. He is
also grateful to Donald Brown, Edward Leamer, David Schmeidler, Martin Shubik, Sidney
Winter, Asad Zaman and Arnold Zellner for calling his attention to relevant literature.

[Note of the Editor: Except for a few minor editorial changes, this article publishes content
formerly circulated as Discussion Paper no. 807 of the Cowles Foundation at Yale University,
November 1986.]
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From the point of view of Bayesian decision theory, Knight's distinction
has no interesting consequences. According to the Bayesian theory decision
makers act so as to maximize the expected value of their gain, no matter
whether the fluctuations faced are risky or uncertain.

However, Knight's idea does seem to have some intuitive appeal. Ells-
berg’s (1961, 1963) experiments seem to show that people are repelled by
vagueness of probabilities. Bayesian decision theory also has the following
disturbing implication. Suppose two decision makers are faced with the same
decision problem with the same objectives, constraints and information, but
with uncertain outcome. Suppose the objective function is strictly concave
and the constraint set convex, so that the prior distribution of a Bayesian
maximizer determines a unique decision. Then, if the decision makers do
not choose the same decision, one must conclude that they have different
prior distributions and so would be willing to make bets with each other
about the outcomes. These conclusions strike me as questionable. Betting
outside of gambling casinos and race tracks is uncommon, but disagreement
over cooperative decisions seems to be part of everyday life. One may try
to explain the lack of betting by mutual suspicion that the other decision
maker has secretly acquired superior information. | find this argument hard
to reconcile with the observation that people usually seem very fond of their
own decisions. Knight's ideas suggest another way to explain the absence
of bets. In the presence of uncertainty, decisions may not be determinate,
and bets may be shunned unless they are very favorable.

In this paper, | propose a rigorous formulation of Knight's somewhat
vague ideas. The basic idea is to drop the completeness assumption from
Savage’s (1954) framework and to add an assumption of inertia. (In fact,
| drop completeness from the reformulation of Savage’s theory made by
Anscombe and Aumann (1963).) The completeness assumption asserts that
any two lotteries are comparable in the preference ordering; that is, one is
preferred to the other or they are equivalent in the ordering. When this axiom
is dropped, one obtains a set of subjective probability distributions rather
than a single one. One lottery is preferred to another if its expected value
is higher according to all the distributions. The idea of the inertia assump-
tion is that a person never accepts a lottery unless he prefers acceptance to
rejection. There is atatus quo with which he stays unless an alternative
is preferred. Without the inertia assumption, choices between all incompa-
rable alternatives would be arbitrary. | apply the adjective “Knightian” to
behavior consistent with the assumptions just described.

Knightian behavior seems to correspond to Knight's intuition about in-
vestor behavior. If an individual found a new investment opportunity un-
certain and hard to evaluate, he would be unlikely to undertake it, for he
would do so only if it had positive expected value for each of a large set of
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probability distributions. There is a form of aversion to uncertainty which
is distinct from the usual risk aversion.

Also, Knightian behavior does notlead to the paradoxical high propensity
to bet mentioned earlier. Two Knightian decision makers in disagreement
would not be willing to bet with each other on some event unless the min-
imum probability one decision maker assigned to the event exceeded the
maximum probability assigned by the other.

It is important that in Knightian decision theory one cannot predict de-
cisions from knowledge of preferences. The theory can say only which
decisions would be undominated by others and would be preferred to the
status quo. The theory would not be contradicted if a decision maker cannot
be persuaded to move from one undominated decision to another, as | shall
explain presently.

The indeterminateness of decision may be viewed as a defect of the
Knightian theory, since theories should explain as much as possible. But |
suspect that indeterminateness, as well as uncertainty aversion and inertia,
may turn out to be real and important. If this is so, they will have to be
accommodated, perhaps, of course, by a better theory than the one proposed
here.

The inertiaassumption prevents a Knightian decision maker from making
intransitive choices, provided the choices are between lotteries that are to
be carried out. Choices between hypothetical choices could, however, be
highly intransitive.

What | call the Knightian theory is not original. There exists a sizeable
literature on the subject, including papers by Aumann (1962), Smith (1961),
Walley (1981, 1982), and Williams (1976). This literature is reviewed in
Sect. 8. What is new in this paper, | believe, is the emphasis on the inertia
assumption. This assumption strikes me as crucial, yet | have nowhere found
it made explicit or defended.

Itis perhaps unfair of me to apply Frank Knight's name to the theory de-
scribed in this paper. It is not entirely clear what he had in mind, and there is
an attractive alternative class of preferences which display uncertainty aver-
sion. These are complete preferences represented by a utility function of the
formu(x) = min,c E;x, wherex is arandom variablej is a set of prob-
ability distributions andE; is the expectation with respectto Such pref-
erences have been characterized axiomatically by Gilboa and Schmeidler
(1989). Hereatfter, | will refer to them as Gilboa—Schmeidler preferences.
Such preferences are probably more convenient than the Knightian theory
of this paper for the foundation of statistics, as | explain in Sect. 8. How-
ever, Gilboa—Schmeidler preferences do not lead to the sorts of economic
behavior which make Knightian behavior interesting. For instance, unless
an individual with Gilboa—Schmeidler preferences has the same utility in all
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states of the world he may behave much like an individual with preferences
obeying the expected utility hypothesis of Savage. The distinction between
Gilboa—Schmeidler and Knightian behavior is discussed in Sect. 6.

| propose the Knightian model of behavior because it helps rationalize
many economic phenomena which otherwise seem difficult to explain. Some
ofthese are discussed in the conclusion. The ability of the Knightian model to
explain economic phenomena does not make it true in a descriptive sense.
Only careful empirical work can establish whether the predictions of the
Knightian theory occur with sufficient regularity that the theory may serve
as a sound basis for economic analysis. | discuss experimental work and
possible experiments in Sect. 7.

For good reasons, economists tend not to view empirical evidence as
sufficient reason for accepting models of individual behavior. Economists
want their models also to represent individuals as rational beings. | have
viewed my main task in writing this paper to be to convince readers that
Knightian behavior is rational, just as rational as behavior generated by the
expected utility hypothesis or by Gilboa—Schmeidler preferences.

A person is defined to be rational, | believe, if he does the best he can,
using reason and all available information, to further his own interests and
values. | argue that Knightian behavior is rational in this sense. However,
rationality is often used loosely in another sense, which is that all behavior
is rationalizable as serving to maximize some preference. The two senses
of rational are in a way converse. The first says that when preference ex-
ists, behavior serves it. The second says that all behavior is generated by
preferences. The second sense seems to be very unlikely to be true, except
by definition. It does not even seem to be useful as a definition. If choice
is made the definition of preference, then one is led, like a true sophist,
to the conclusion that people always do what they want to do, even when
compelled to do things by threats of violence. The first sense of rationality
is the one which is important for economic theory, at least as it is presently
formulated. One would like to believe that people usually act so as to serve
their own economic interests, at least when these interests are clear and do
not conflict with other interests. If one identifies the two converse senses of
rationality, one needlessly jeopardizes the first sense, since the second sense
is probably more likely to be rejected than the first.

Associated with each definition of rationality is a different point of view
toward incomplete preference. The view associated with the first definition
of rationality is that the preference ordering is a constituent of a model which
explains some but not all behavior. Behavior never contradicts the ordering,
but not all choices are explained by it, nor are all stated or felt preferences.
The model is not contradicted if an individual expresses strong preferences
between alternatives which he finds incomparable according to the model.
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Such unexplained preferences or choices may be erratic and intransitive, but
this is no cause for concern. Such behavior does not make the individual
irrational, since the intransitive choices are not assumed to be in pursuit of
some goal. The individual becomes irrational only if one tries to infer some
unchanging goals from his choices or statements. It is because | adopt the
point of view just stated that | said earlier that the Knightian theory is not
contradicted if an individual shows a preference for one undominated choice
over another.

I now turn to the view of incomplete preference associated with the sec-
ond definition of rationality. This view accepts all stated or revealed prefer-
ence at face value, but adds a category of incomparability to the categories of
indifference and strict preference. That is, an individual may assert that two
alternatives are incomparable. Choice behavior cannot distinguish indiffer-
ence from incomparability. In fact, if one thinks about choice behavior one
can quickly convince oneself that incomparability is an empty category. (If
an individual chooses overy, he either will or will not accept a small bribe
to reverse his choices.) It is for this reason, | believe, that incompleteness is
often referred to in the literature as intransitivity of indifference. A disad-
vantage of the second view of incompleteness is that it makes all individuals
rational by definition.

The obvious way to escape from this tautology is to impose structure on
preferences, such as transitivity and monotonicity. But a strong model of this
sort is too frequently contradicted by reality, | believe. Is not everyday life
full of inconsistent choice and unresolved goal conflicts? One could assert
that only economic decisions are assumed to be rational, but this assertion
can be justified only by the first definition of rationality.

One could also argue that the concept of preference is operational only
if it is identified with choice. However, this is not so. The Knightian theory
makes fairly obvious testable predictions. These stem largely from the inertia
assumption.

The central problem of this paper is to make the inertia assumption
precise and to defend its rationality. The intuitive idea of the assumption is
that if a new alternative arises, an individual makes use of it only if doing so
would put him in a preferred position. “New” means previously unavailable,
and rejection of a new alternative means carrying on with previous plans.

It is not immediately clear how to make sense of this idea. If one adopts
the usual point of view of decision theory, one assumes that a decision maker
chooses at the beginning of his life an undominated program for his entire
lifetime decision tree. What is th&atus quo or initial position in such a
decision tree? If one is defined, why should the decision maker choose only
programs preferred to it? It would be equally rational to choose a program
incomparable to the initial position.
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The answer to the second question is that inertia is not a consequence of
rationality. Inertia is an extra assumption which is consistent with rationality.

| present three different versions of inertia. The first, given in Sect. 3,
defines new alternatives to be ones to whose appearance the decision maker
had previously assigned probability zero. The initial position is the position
planned before the appearance of the new alternatives. The inertia assump-
tion applies to the decision maker’s way of reacting to new alternatives when
they arrive.

The second approach to inertia defines inertia as a property of the undom-
inated program, chosen at the beginning of life. It is assumed that certain
choices appearing after the initial period can be identified in a natural way as
new, even though they are anticipated. An independence assumption guaran-
tees that choices among new alternatives do not interact with other choices.
The inertia assumption is that the chosen program makes use of new alterna-
tives only if any program not doing so would be dominated. It is proved that
there exists an undominated program satisfying the inertia assumption. In
this sense, inertia is rational. This approach to inertia is presented in Sect. 4.

Section 5 contains the third approach to inertia. This approach makes a
slight concession to bounded rationality in that it recognizes that a decision
maker cannot possibly formulate a lifetime plan covering all contingencies.
The disadvantage of bounded rationality is that it makes the concept of ra-
tional behavior very ambiguous. The best one can do is to imagine what a
sensible, self-interested and boundedly rational person might do. | simply
tell a plausible story in which inertia may be identified. | assume that the
decision maker continually makes approximate plans. The inertia assump-
tion is that these plans are abandoned only if doing so is judged necessary
for an improvement. This picture of reality motivates a loose definition of
inertia given in Sect. 5. It is probably the loose definition which should be
used when applying the theory.

2. Structural theorems

| here present representation theorems for incomplete preferences over gam-
bles. This material is not original. The proofs are contained essentially in
Aumann (1962, 1964b), Smith (1961), and Walley (1981). In spite of all this
previous work, | present my own structural theorems. None of the sources
presents the material in a way that is really suitable for my purposes. The
presentation here is such that the theory of von Neumann and Morgenstern
remains unchanged if the probabilities are known objectively. Incomplete-
ness applies only to gambles over events of unknown probability.

| follow the Anscombe—Aumann (1963) formulation of choice under
uncertainty, | have also been much influenced in choosing assumptions by
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recent papers of Myerson (1979, 1986). | retain essentially all of their as-
sumptions except completeness.

| retain these assumptions not because | believe them but because they
do have some normative justification. Experimental evidence seems to show
that the assumptions do not describe behavior accurately. However, if lotter-
ies are repeated often and the probabilities are known, their expected values
do approximate actual outcomes. In this limited context, at least, it would
be foolish to violate the assumptions.

If probabilities are not known, there seems to be no normative justifica-
tion for completeness. The usual argument against incompleteness is that
haphazard choice among incomparable alternatives can be intransitive and
so lead to exploitation by a money pump. But any of the inertia assumptions
prevents such exploitation, as is explained in Sect. 6. (A money pump occurs
if a person chooseB minus a little money oveA, C over B andA overC.

If this cycle were repeated, the person would lose a little on each round.)

Incompleteness itself might be thought irrational. But from the point of
view of the first definition of rationality mentioned in the introduction, in-
completeness simply limits the criterion for defining rationality. If a rational
person is one who acts so as to achieve his objectives, a person without
objectives is both rational and irrational, just as any statement is true of an
empty set.

I now turn to the representation theorems. In order to make clear the
structure of the theory, | first of all present the case in which utility is linear
in rewards or payoffs. The utility should be thought of as von Neumann—
Morgenstern utility.

The mathematical notation is as follows. Lt finite set of states of
nature. If B c S, R2 is the set of real-valued functions dh Identify
R with the obvious subspace &°. The functionI1? : RS — R2 is the
natural projection. The symbe} denotes the indicator function &f. That
is,ep(s) = 1if se B, andeg(s) = 0 otherwise. Ifx € S, x; is the reward or
utility in states. If x andy belong toR%, x > y meansy, > y,, for all n,
andx # y. If w is a probability onS, if B C S andx e RS, thenE, [x|B]
denotes the expectation ofwith respect tor, conditional onB.

The preference ordering consists of an ordesingon R for each non-
empty subseB of S. The expression >z y means is preferred toy if B
is known to be true. | write- for > . No relation of indifference is assumed.
Howeverx andy are said to bequivalent if, for all z andB, x > z if and
onlyif y =p zandz =5 x ifand only if z >p y.

1 Aumann (1962, 1964a) has criticized the completeness assumption both as normatively
unsound and descriptively inaccurate.
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A denotes a field of subsets §fof objectively known probabilityg :
A — [0, 1] is the objective probability. Thequis objective in the sense that
all observers would be consciousgpfnd agree to it.

The first assumption expresses the natural relation between the condi-
tional and unconditional preference orderings.

Assumption 1. For all non-empty subsets B of S and all x and y in RS,
x >p yifandonlyif IT8x > I%y.

The next assumption says simply that more utility is better.
Assumption 2. x > y impliesx > y.

The following assumption says thatis an ordering of strict preference.
Assumption 3. x > y > zimpliesx > zand for nox isx > x.

The next assumption is of only technical significance.
Assumption 4. For all x, {y |y > x} isopeninRS.

The key structural assumption is the following one. It has an obvious
interpretation if one thinks afx + (1 — a)y as the lottery givinge with
probabilitya andy with probability 1— a.

Assumption 5. For all x, y and z, andfor all a € (0, 1), y > zif and only if
ax+1—-a)y =ax+ (1 —a)z.

The last assumption asserts that the known probabilities of evedts in
are treated as they should be.

Assumption 6. For all Ae A, e, isequivalent to the lottery g(A)es.

Theorem 1. If the > 5 satisfy Assumptions 1-6, then thereisa closed convex
set A of probabilitieson S such that

(i) forall xandyand B, x =g yifandonlyif E,[x|B] > E.[y|B] for
al T eA,

(ii) forall Aec A, n(A) =¢q(A),and

(iii) for all w € A, w(B) > 0 for all non-empty subsets B of S.

The proof of this theorem appears in the appendix.

In the light of Theorem 1, one may define an indifference relation on
RS by x ~p yifand only if E;[x|B] = E.[y|B] for all = € A. Clearly,
if x =g ¥y =p z, thenx >3 z. However, the statement“# y” does not
imply “x < y”. The ordering> is complete on the set afin RS such that
x is measurable with respect i,

One defines the ordering to be complete if, for alk e RS, the closure
of {[yeRS |y = x orx > y}is all of RS. Clearly,> is complete if and only
if A consists of a singleton and so the expected utility hypothesis applies.
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I now turn to the case in which preferences are for lotteries over conse-
guences, so that one mustinfer the existence of avon Neumann—Morgenstern
utility function. Let X be a finite set of consequences. llebe the set of
probability distributions inX. Identify x € X with the probability measure
8, € A which assigns probability one ta For a non-empty subsét of S,
let A2 = [],.z A and letl1? : AS — A% be the natural projection. Fix
x* € X and identifyix € A® with the vectord’ € A defined by, = A, if
s€ B, andx, = 8.« if s ¢ B. With this identification,A? is thought of as a
subset ofAS. HereAS is given the usual topology as a subset of a Euclidean
space.

Preferences are expressed by orderingon A, whereB varies over
the non-empty subsets 6f An ordering>3 is said to be complete if, for
eachi € AS, AS equals the closure df\/ A >3 A orA >, X'} If =3 is
completep ~ A’ means neithex > A’ norA’ >3 A. Indifference is not
the same as the notion of equivalence, defined earlier.

The field A of subsets ofs and the probabilityy : A — [0, 1] are as
before.

Three additional assumptions are needed Al = (A€ A® |1, = Ay
for all s ands’}.

Assumption 7. The restriction of > ) to Ag,,isthe samefor all s € S.
Assumption 8. For all s € S, > iscomplete.
Assumption 9. For any s, 8, > 8, for somex and x’ in X.

Assumptions 2, 4 and 6 are now replaced by the following.
Assumption 2a. A > A" if A >, A’ for all s and A >, A’ for somess.
Assumption 4a. For all A, {A'|\' > A} and {' |\ < A} areopenin AS.

Assumption 6a. For any A< .4 and any A and A’ in A, the vector A, € AS
defined by A1, = g(A)A+ (1 —¢g(A))A/, for all s, isequivalent to the vector
Ao defined by Ay = Aifse A, and dy, = A if s & A.

Think of Assumptions 1, 3 and 5 as applying to thg defined onAS
rather tharRS.

If u: X - Randxe AS, thenE,u € RS denotes the vector whoséh
component iy As(X)u(x).

Theorem 2. If the > 5 satisfy Assumptions 1, 2a, 3, 44, 5, 6a, and 7-9, then
thereexistsafunctionu : X — R and aclosed convex set A of probabilities
in S such that

(i) forall A,2 and B, » =5 A ifandonlyif E,[Esu|B] > E,[E;u|B],
forall m € A,
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(i) forall Ac A, n(A) =¢g(A)foralzeA, and
(iii) for all w € A, w(B) > 0O for all non-empty subsets B of S.

The proof of this theorem appears in the appendix.

Theorems 1 and 2 are given only in order to show that Knightian behavior
is consistent with very strong notions of rationality. From a descriptive point
of view, many of the restrictions imposed are not desirable. The assumptions
essential for the Knightian theory are an inertia assumption and the structural
assumptions given below. Assume that payoffs are in utility and, |&®,
and so on, be as before.

Structural Assumption 10. For each non-empty subset B of S thereisa
preference ordering >z on RS suchthat x > yifandonlyif IT8x > T128y.
The ordering > is transitive and irreflexive and is monotone in the sense
that x >5 y whenever x > y.

Structural Assumption 11. Thereisaset A of probabilitieson S such that
x =p yimplies E;[x — y|B] > Ofor all = € A. Also, 7(B) > 0 for all
7 € A and for all non-empty subsets B of S.

Notice that itis not assumed that- 5 y whenevelE, [x — y|B] > 0 for
allz. Thisimplication seems to be of little interest for economic applications.

The “fatness” ofA is a measure of the Knightian uncertainty about events
inS.

3. Behavioral assumptions

I now present assumptions relating behavior to preferences. These assump-
tions are a version of the inertia assumption and the obvious assumption that
decision makers make undominated choices. In order to express the inertia
assumption rigorously, it is necessary to define a decision problem.

Let the periods of time be = 0, 1, ..., T. The description of the en-
vironment at timer is ¢, € E;, whereE,; is a finite set andtg is a sin-

gleton. The state or event at timmés s, = (eg, €1, ..., ¢;). Let S, denote
Eox E1 x---x E, and§ = Uf:OSl is the event tree. Thesi is ordered
naturally by succession; that is,,, = (eo, ..., e/, €41, ..., €4,) SUC-
ceedss;, = (eq,...,e). If s;,8.41,..., 5.4, are written consecutively, it

is implied thats, 1 succeeds;, and so on. For eache S, A(s) denotes
the set of actions available in stateAssume that eacH(s) is finite. A
deterministic program is a functiangiving the actiom(s) € A(s) for each
s € S. If actions are determined by a progranthen the reward in state
st isr(a(sg), als1), ... ,a(sr); st) = r(a, s7). Rewards are assumed to be
measured in utility.

I now describe how programs are compared. It is assumed that the states
s; may be endogenous. That s, their evolution may be influenced by actions.
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The underlying set of states of natug®, may be described as follows. For
eachhr =0,1,...,T—1,lets; = {(s;, a;)|s; €S, anda, € A(s;)}. LetQ, =
{w; 1 Ty = S;11|w: (s, a;) SUCceeds;, for all s, anda,}. ThenQ = Qg x
Q1 x---x Qr_1.Adeterministic prograraand arw € Q together determine
a sequence of successive stateS;inall it (so, s1(@, @), ... , s7(a, ®).

Assume that the decision maker’s preferences satisfy the assumptions
of Theorem 1. Since& is finite, that theorem applies. L&t be the closed
convex set of evaluating probabilities enlf = € A anda is a deterministic
program, letE 7 (@) = ) .o T(w)7 (@, s7(a, w)).

The list of objectqS, A, r, 2, A) defines a decision problem, which |
call P.

A random program is a probability distribution over the set of determin-
istic programs. Random programs are denoteg lyyd deterministic ones
by a. Deterministic programs may, of course, be thought of as special cases
of random ones. If a decision maker uses a random programe chooses
a deterministic program according to the probability distributiop and
then uses actioa(s) in each state at which he arrives.

For a prograny, 7(y, s7) denotes) _, y (a)7(a, sr). A programy dom-
inates programy’ if E,7(y) > E,r(y’) forall r € A, whereE,r(y) =
Y aY@E;7(a). A program is undominated if no program dominates it.
Becauses and theA(s) are finite, an undominated program exists. The sets
S and A(s) may be assumed to be infinite, provided enough assumptions
are made to guarantee that undominated programs exist.

A new decision problem is said to occur by surprise at tinfea state
s’ occurs which does not belong fand if associated with; there is a
decision problenP (s;) = (S', A’, r', Q', A"), where the sef’ is a tree with
elementss;, ... , s7). Itis assumed that statpand problenP (s;) were not
anticipated by the decision maker. If he had thought of the possibility that
they might occur, he had assigned the possibility probability zero. Assume
that to every state, € S’ there naturally corresponds a stgté),) € S. By
“naturally” | mean that the description of the environment corresponding to
s/ contains all that is in the description of the environment corresponding
to f(s;). A programa for the decision problen® is said to apply taP (s;)
if a(f(s’)) e A'(s’) for all s’ € S’. Suppose the decision maker is following
programa for P when a new problen® (s;) occurs by surprise.

If a applies toP(s;), then the decision maker is said to adopt a new
programy for P(s;) if y does not equal the program fBi(s;) defined bya.

The behavioral assumptions are the following.

Maximality Assumption. In any decision problem, the decision maker’s
actions are determined by an undominated program.
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InertiaAssumption. If any decision problemoccurs by surprise, the deci-
sion maker changes his programonly if the new program dominates the old
onein the new problem.

These assumptions imply that, if a series of surprise problem changes
occur, then each time a change occurs the decision maker chooses an un-
dominated program which differs from his previous program only if the new
program dominates the old one. The Inertia Assumption implies that the ini-
tial point with which new alternatives are compared is planned behavior.

It might seem that inertia implies irrationality, for people can be truly
surprised only if they assign probability zero to events which in fact do occur.
However, there is nothing necessarily irrational in making assumptions about
reality which turn out to be false. Such assumptions are irrational only if
there is good reason to doubt them.

4. Inertiaand independence

I now present a version of the Inertia Assumption in which the arrival of new
alternatives is anticipated, but they are used only if doing so is hecessary
in order to achieve an undominated program. The new actions are assumed
to be distinguished from old ones in a natural way. In order to express this
distinction within the model of the previous section, assume that there are
finite setsAg, A4, ..., Ay suchthatA(s,) = Ag x A1 x --- x A, for all s,

and:. The actions inA; are new at time. If a is a deterministic program,

a(s,) may be written agag(s;), ... , &(s,)), wherea, (s;) € A, foralln. The
programa; is called therth component program @i.

Assume alsothatthere are functieps, . .. , rr suchthat (a(sg), . . . ,
a(sr); st) = ro(@o(so), . .. , ao(s7); s7) +ri(@(sy), ..., aw(sr); s7) + ...
+ rr(ar(st); s7). The functionr,(a:(s;), ..., a:(s7); sr) IS written as

7 (&, s7), SO that(a, s7) = Y 1o 7 (@, s7)-

It is assumed that for each > 0 there is a point Oe A, such that
r(0;,...,0;s7) = 0 for all ar. The action @ corresponds to not using
A;. Thetth component prograr®, is defined byo, (s,) = 0, for all s, with
n>t.

It will be assumed that the decision maker uses a special kind of pro-
gram, which | call a behavioral program. L&t be the set of alk, =
(ao, ... ,a;_1,s;), Wwheres, € § anday, ..., a,_1 are actions in preceding
states. Thatisy, € A(s,) for all n, where the,, preceds,. For each,, the
subproblemP(z,) = (S(s;), A, ', 2(z,), A(z,)) is the decision problem
obtained by restricting the original problemto the state, and its succes-
sors.P(z;) may depend on all the componentgdbecause actions taken be-
fores; influence rewards. The states®ftag, ... ,a;_1, s;) areS(t) = {s €
S|s = s; or s succeeds;}. The rewards for a deterministic progranfor
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P(s;) arer’(@(s,),...,a(st);st) = r(ag, ... ,a;—1,&(s;), ..., a(st);
st). The set of states over which probabilities are define@ s, . .. ,
a;—1,8;) = {w € Qls;(ao, ... ,a_1, w) = sy} wheres, (ag, ... ,a,_1, w) iS
the state at time determined by, . .. , a,_1 andw. The set of evaluating
probabilities isA(aq, ... ,a,_1,st) = {w[-|Q(ao, ... ,a,_1,s)]|7r € Q}.
Clearly, P(z0) = P(so) = P, whereP is the entire decision problem.

Abehavioral prograrns specifies for each) € Z a probability distribution
B(z;) over therth component programa, for P(z;). A decision maker
using a behavioral prografselects ath component program for P(z,)
according to the probability distributiofi(z,). The programe, determines
his choice of actions im, until time T. A behavioral program therefore
determines actions at every stateglfs a behavioral program antde A,
thenE .7 (B) is defined in the obvious way. It is not hard to see that, for any
behavioral prograng, there exists a random progransuch thatt, 7 (8) =
E r(y)forallm e A.

For anyz, € Z, let B(z,) be the behavioral program fét(z;) defined by
B. If B(z;) is not the zero prograrty, let Bo(z:) be the behavioral program
for P(z,) which is the same g%(z;) except that theth component program
is O;.

A behavioral prograng is said to have thinertia property if, for every
7:, either B(z,) is therth component zero progra® for P(z;) or B(z,)
dominatesBo(zT). That is, the decision maker uses actionsdinonly if
doing so is advantageous from the point of view of time

Inertia Assumption. The decision maker chooses a behavioral program
with the inertia property.

Trivial examples show that no undominated program may have the iner-
tia property. However, such programs do exist if an independence assump-
tion is made. Before proceeding, | must define independenceP],dor
n=1...,N, be partitions of2. For suchn, let A(P,) = {m,|7, is the
restriction to the field generated B of somer € A}. The partitionsP, are
said to be mutually independent with respecitd, given anyr, € A(P,),
forn=1,..., N,there exists € A suchthatr (NY_,A,) = [T_; 7. (An)
forany setsdq, ..., Ay suchthatd, € P, for all n. (It does not follow that
the partitionsP, are mutually independent in the usual sense with respect
to everyr € A.) Functionsgy, ... , gy defined or2 are independent if the
partitions they generate are independent.

I now define the independence assumption. Aebe the set of all
deterministic programs. In the independence assumption about to be
stated, considef, as the functiom: : Q@ — {g : A — (—o0, +00)}
defined by (w) (@) = 7+ (a;, s7(a, w)). Similarly, consides; as the function
h:Q — {g:A— S} defined byr(w)(@) = s,(a, w).
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Independence Assumption. The functions 7, ... , 77 are mutually inde-
pendent with respect to A and, for all ¢, the functions 7, and s, are indepen-
dent with respect to A. Finally, for all ¢, if w € Q issuch that 7 (w) > O for
somew € A, then 7 (&, st(a, w) does not depend on a, for n # ¢, where a,
is the nth component program of a.

The following assumption is also needed.

Separ ation Assumption. For each sy # s7 in Sy, there existst and a rth
component program a, such that 7 (a;, s7) # 7 (&, s7).

Theorem 3. If the above assumptions are satisfied, then there exists a be-
havioral program which is undominated and has the inertia property.

This theorem is proved in the appendix.
The assumptions of this theorem may no doubt be weakened, but some
independence assumption seems necessary.

5. Inertia and incomplete planning

One might like to make use of the Inertia Assumption in settings where
the decision maker would have gained had he anticipated that a particular
new alternative might appear and probably would have assigned its appear-
ance positive probability, had he considered the matter previously. For these
reasons, one might define inertia loosely as follows.

Loose Inertia Assumption. If the decision maker has not previously
planned how to react to particular new alternatives, he does not make use
of them unless doing so leads to an improvement from the point of view of
the moment when he becomes aware of their existence.

If the stricter version of inertia given in Sect. 3 is valid from a descriptive
point of view, then the above version is probably valid as well. The ques-
tion to be dealt with is whether the looser version corresponds to rational
behavior.

One might be tempted to argue that, in the presence of uncertainty, an
undominated program may be achieved even if one does not plan for events
of low probability. Thus, it would be rational not to plan for new alternatives,
if their appearance was thought unlikely. This intuition is valid in some
cases. However, that it is not always valid is demonstrated by the following
example.

There are three periods, labeled 0, 1 and 2. The problem is to distribute
purchasing power between periods 0 and 2. The utility function for expendi-
turesx in each period is lodl + x). Utility is enjoyed only in periods 0 and
2. Income is earned in period 2. There are two statesid H in period 2.
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Income is 3in staté and 5 in staté4. The individual may borrow in period
0 at no interest. The loan must be repaid in period 2. There is uncertainty
about the state in period 2. In periods 0 and 1, the individual believes that
the probabilityr; of stateL liesin the interva[1/6, 1/3]. Insurance against
stateL may be offered in period 1. If insurance is offered, two units of ac-
count in state. may be had in exchange for one in stéfeAt time 0, the
individual believes that insurance will be offered with probabitity> 0,
wherex is small.

Suppose that the individual ignores the possibility that insurance may be
offered. If we solve

max[log(1 + xo) + 7 10g(1 + x2,) + (1 — 7)) log(1 + x24) |
X0

subject taxy;, = 3 — xg andxzy = 5 — xg, and withr;, = 1/3, one obtains

xo = 2,x3r = 1, xop5 = 3. This is therefore an undominated program
provided the possibility of insurance is ignored. If this program is used and
insurance becomes available in period 1, then buying insurance in period 1
would not lead to a preferred position. For suppose that 0 units of
insurance in staté were purchased. Evaluating the gain with = 1/6,

one finds that it is at most (a/48) < 0.

Suppose now that attime 0 the individual took into account the possibility
that insurance might become available. Suppose he changed his program by
borrowinge > 0 more and buying > 0 units of insurance in period 1 if it
became available. The derivative of his gain with respeetdte = 0 is

1 1 13 1 1 1 1 1
a(é_( —7TL)21§> +(1-oa) (é_EnL_( _7TL)1>
which is positive for anyx > 0 and anyr; €[1/6, 1/3]. Thus, ife > 0 is
small, this change leads to an unambiguous gain. It is not rational to ignore
the possibility that insurance may become available, no matter howemall
may be.

If one had chosen the initial program by maximizing with respect to some
m; < 1/3, then it would have been rational to plan not to buy insurance,
if « were sufficiently small. This observation might tempt one to restrict
attention to undominated programs which were optimal with respect to some
intermediate prior distribution (in the relative interior®j. However, such a
restriction would conflict with the Inertia Assumption. In a general decision
problem with an initial point, the only undominated program dominating the
initial point may be one which is optimal with respect to a prior distribution
near to the boundary of the s&tof prior distributions.

One is thus pushed toward bounded rationality in looking for arguments
to defend the rationality of the Loose Inertia Assumption. Bounded ratio-
nality certainly makes sense in the context of lifetime decision planning.
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It is obviously impossible to specify in advance a complete lifetime deci-
sion problem. Powerful computers would not help overcome this limitation,
since the limiting factor is imagination, not computational capacity.

If complete forward planning is impossible, it makes sense to change
one’s mind from time to time and not to act according to plan. Inertia is the
refusal to change plans unless doing so leads to an improvement.

The disadvantage of bounded rationality is that the concept of rationality
itself becomes ambiguous. In trying to describe rational behavior, the best
one can do is to imagine what a wise person might do in trying to advance
his own interests. Such a person might well show inertia. Inertia may sound
conservative and boring, but it can simplify life by reducing the frequency
of changes in plans and by eliminating from consideration new alternatives
which may arise. There seems to be little more that one can say.

Some insight may be gained into the meaning of the Loose Inertia As-
sumption by trying to express it slightly more formally in the context of
bounded rationality. Suppose the decision maker is faced with a decision
problem(S, A, r, 2, A) of the sort described in Sect. 3. If the problem were
much too large and complex to be solved completely, a sensible decision
maker might organize his thinking by solving a simple approximation to the
problem at each stage. Let M(s;) = (§', A’,r’, Q', A’) be the approxi-
mating model used in state We can imagine that the decision maker could
achieve coherence between current and future behavior by specifying a func-
tion f;, at states,. The functionf,, would assign to any modeé¥ (s,,), for
n > 0, a program foiM (s;,). The programy;, (M (s,)) should be maximal
in M(s;). This program would determine action at stateThe f;, could
correspond to rules of thumb or standardized procedures for reacting to sit-
uations. Of coursef;, could also simply specify the program maximal with
respect to some fixed prior distribution, if one could be specified in advance.

Inertia Assumption. If f (M (s;4+1)) ismaximal in M (s;11), then f;, ., =
fy,- Otherwise, £, (M (s41)) dominates f;, (M (si+1)) in M (s,+1).

6. Diagrammaticillustration

Therelation between the Savage and Knightian theories may be seen easily in
adiagrammatic representation of the case with two states. £etl, 2} and

label the abscissa and ordinate with the payeffandr,, in states 1 and 2,
respectively. Payoffs are in units of utility. In the Savage case, the preference
ordering is represented by indifference curves which are parallel straight
lines with slope—m1(1 — 1), wherern; is the subjective probability of
state 1. Herer; is defined by the relatiotry, 2) ~ (1, 0) (see Fig. 1).
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According to the Knightian theory of Theorem 1, preferences are defined
by two families of parallel straight lines with slopest1(1 — 1)~ and
—m,(1— )%, respectively, where & 7, <7 < 1.

A pointy is preferred tor if and only if y is above the two lines through
x. The preference ordering is complete if and only if= 7 (see Fig. 2).
If the Knightian theory is that of Assumptions 10 and 11, then one can assert
only that, if y is preferred tox, theny lies above the two lines through

The number&; andzr; may be thought of as upper and lower probabili-
ties for state 1, respectively. Here is defined by(a, a) = (1, 0) ifand only
if a > 71 while rr, is defined by(a, a) < (1, 0) ifand only ifa < z;. That
is, the decision maker is willing to receive # exchange for $1 in state 1 if
and only ifa > 7. Similarly, he is willing to give & in exchange for $1 in
state 1ifand only itz < z,. Foranys > 0,7, — ¢ andmw + ¢ are possible
bidding and asking prices, respectively, for $1 in state I, lf< a < 7y,
then(a, 0) and(1, 0) are not comparable. Similar definitions may be given
for upper and lower probabilities for state7?; andz ,, respectively. They
satisfym, =1—m, andr, =1 — 7.

Notice that, ifx; > 0 andx, < O, thenx > O if and only if 7 ,x1 +
Tx2 > 0. Gains are weighted by the upper probability and losses by the
lower probability. This conservative weighting of gains and losses results in
uncertainty aversion.

When there are only two states, preferences are defined entirely by upper
and lower probabilities. When there are more than two states, it may not be
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Fig. 2.

possible to derive preferences from upper and lower probabilities, for the
setA of subjective probabilities may be “round”.

According to the Inertia Assumption of Sect. 3xifn Fig. 2 is the initial
point, then a point such gswould be chosen instead ofif y were offered
by surprise as an alternative to A point such ag would not be chosen
overx. After y is chosen, it becomes the new initial point. Thus, the Inertia
Assumption would prevent intransitive choices among successive surprise
alternatives. However, if various alternatives were offered in some sequence
which was foreseen or at least thought possible, some successive choices
might be intransitive. However, the maximality or undominatedness of the
program guiding these choices would prevent the occurrence of a money
pump. If either of the other two versions of inertia are assumed, a money
pump is impossible for the same reasons.

According to the Inertia Assumption of Sect. 4, the initial point necessar-
ily plays arole in choice only if the events 1 and 2 are independent of all else
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of significance in the decision maker’s life. If they are independent of the
rest of his life, then we can say only that any choices made must be preferred
to zero. It will not necessarily be the case that each choice becomes the new
initial point.

If a set, such a€'in Fig. 3, is made available and if the initial pointis zero,
then any point on the boundary Gfbetweem andB could be chosen. Two
decision makers with the same preferences might choose different points
along this frontier. The Inertia Assumptions of Sect. 3 or 4 imply that once
a choice was made, the decision maker would not want to move to another
point along the frontied B. Two decision makers making different choices
would not want to make side bets with each other unless an upper probability
of one decision maker were less than the corresponding lower probability
of the other decision maker.

Uncertainty aversion could discourage mutual insurance. Let the rewards
rs nNow be measured in units of one commodity and suppose that utility is
concave irr,. Then, the Edgeworth box diagram for the case of two states
and two traders could be as in Fig. 4. Assume that the initial endowment
point w is also the initial point. The sets of points preferred to the initial
point are denoted; and P, respectively. Even if endowments were very
asymmetric and the preferences of the traders were the same, there might
be no trade in insurance. Nevertheless, the equilibrium would be Pareto
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Fig. 4.

Lo r

optimal. | now compare the interpretation of Knight presented in this paper

with the competing one of Gilboa and Schmeidler (1989) mentioned in

the introduction. Recall that Gilboa—Schmeidler preferences are complete
and represented by the utility function of the fortx) = min E, x. Here,
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Fig. 6.

x 1 S = (—o0,+00) is a gamble over a set of stat§swith rewards in
utility, and A is a set of probability distributions ovét These preferences
display uncertainty aversion since preferred sets are convex. However, these
preferences otherwise have implications quite different from those described
in Sect. 2. People with Gilboa—Schmeidler preferences would be very apt to
buy insurance. The Edgeworth box diagram corresponding to Fig. 4 would
be as in Fig 5. Trades in the shadowed area Pareto dominate the initial
endowment point.

If two decision makers with the same Gilboa—Schmeidler preferences
were offered a sef as in Fig. 3, then they would choose the same point.
If two Gilboa—Schmeidler decision makers choose different points ffom
they would be willing to make side bets with each other after the choices
were made, as is illustrated in Fig. 6. The decision maker with the solid
indifference curves would choose poifit The decision maker with dotted
indifference curves would choose poikt
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7. Relation to experimental evidence

The expected utility hypothesis seems to be rejected systematically by exper-
imental evidence. Since the von Neumann—Morgenstern theory is a special
case of the Knightian theory of Theorems 1 and 2, that theory is rejected
too. However, the essence of the Knightian theory has little to do with the
expected utility hypothesis. The Knightian theory is captured by the Inertia
Assumption and Structural Assumptions 10 and 11. These do not imply the
expected utility hypothesis. But they do imply the essential phenomena of
uncertainty aversion and inertia. These phenomena may have some chance
of being verified experimentally.

It is perhaps encouraging that the essential phenomena have little to
do explicitly with probabilities or the calculus of probabilities. Probability
is foreign to most people’s everyday experience. It requires training, after
all, simply to get used to the elementary concepts of expected value, in-
dependence and conditioning. Since lotteries with known probabilities are
encountered rarely by most people, the law of large numbers does not justify
the axioms of von Neumann—Morgenstern. Because decision making under
Knightian uncertainty is a large part of life, there may be some grounds for
hope that people react more systematically to it than they do to lotteries with
explicit probabilities.

One of the implications of inertia and uncertainty aversion is that bid
prices for insurance of an uncertain event may be systematically less than
asking prices, even if the insured event results in a loss to the bidder and
not to the asker or seller. Many explanations may be given for this bid-
ask spread. Game and information theoretic explanations may be found
in Leamer (1986). Still another explanation may be found in Einhorn and
Hogarth (1985%. The same paper reports experimental work which tends to
confirm the existence of bid-ask spreads on insurance of an event of vague
probability, even when the event causes a loss to the bidder.

One might imagine that Ellsberg’s (1961) experiments lend support to
the Knightian theory. However, the choices among the alternatives he offered
would be indeterminate according to the theory presented here, so that his
experiments neither confirm nor contradict the theory. Ellsberg’s (1961,
1963) experiments are, however, consistent with preferences of the Gilboa—
Schmeidler type discussed in the previous section. This fact is an advantage
of such preferences. These preferences, however, would not explain a gap
between bid and ask prices for insurance against a loss suffered by the bidder.

One can imagine simple experiments designed to test the Knightian the-
ory. For instance, subjects could be shown a photograph of someone whose
age is verifiable but unknown to the subject. The subject could be offered a

2 | owe this reference to Sidney Winter.
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sequence of lotteries whose outcome would depend on the true age. Once
a lottery was accepted, each new lottery should be offered as an alternative
to the one previously accepted. The sequence of choices offered should not
depend on the choices made, and this fact should be made clear to the sub-
ject. The last lottery accepted should be paid off at the end of the session
when the true age was revealed. Some of the payoffs must be negative. In
order to induce participation, it might be necessary to pay a fixed sum in
addition. Payoffs should be large enough to interest the subjects but so small
that utility could be assumed to be linear in payoffs.

Structural Assumptions 10 and 11 and the Loose Inertia Assumption of
Sect. 5 imply that if any lottery is chosen, it should have a positive worth
accordingto a set of prior probability distributions. Also, if new lotteries were
accepted in succession, each should be at least as valuable as the previously
accepted one according to the same probability distributions. The experiment
could determine whether behavior was consistent with these assertions.

If the strict inertia assumption of Sect. 3 is assumed, one could assert
only that each lottery chosen should have positive value according to all
the prior probability distributions. One could not assert that each new al-
ternative chosen should dominate the previous choice, for one could not
assure that each new alternative was a surprise. The subject would surely
expect a sequence of alternatives to be offered. Hence, behavior in the ex-
periment would be largely as predicted by the Gilboa—Schmeidler theory.
Only if choices seemed to be irregular or indeterminate could one assert that
the experimental results favored the Knightian theory over that of Gilboa—
Schmeidler.

It could be difficult to design an experiment which could distinguish
clearly Gilboa—Schmeidler preferences from incomplete preferences obey-
ing the strict Inertia Assumption of Sect. 3. It is hard to imagine how one
could generate true surprise so as to manipulate the initial position. It seems
that one would have to take the initial positions as given and seek subjects
with different initial positions with respect to some events. For instance, one
could offer to buy or sell small but real insurance contracts on some event
of vague probability from which certain subjects would suffer financially.
An example would be job loss. The object would be to determine if poten-
tial sufferers were willing to pay as much as non-sufferers were willing to
accept for such contracts. Clearly, any such experiment would be fraught
with ambiguities.
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8. Related literature

There are two bodies of literature very closely related to what has been
presented here, one in economics and done chiefly by Robert Aumann, and
another in statistics.

Aumann (1962, 1964a,b) studied the representation of incomplete pref-
erences on what he called mixture spaces. Among other things, he gave
conditions on an ordering such that a linear utility functiopresents it in
the sense that >~ y impliesu(x) > u(y). Hiswork is described in Fishburn
(1970), Chap. 9, and has been extended to infinite dimensional spaces by
Kannai (1963). None of these authors related the work to Knightian uncer-
tainty. The typical interpretation made of this work by economists seems
to be that incompleteness is consistent with the expected utility hypothesis
(see, for example, Yaari's 1985 lecture published as Yaari (1998)). The rep-
resentation theorems of Sect. 2 in this paper are essentially interpretations
of Aumann’s theorems.

The body of literature in statistics consists of papers by Smith (1961),
Williams (1976) and Walley (1981, 1982). Smith, among other things,
presents in an informal way Theorem 1 of this paper. His work is formalized
and elaborated in the papers by Williams and Walley. All these authors are
interested mainly in upper and lower probabilities as tools of statistical anal-
ysis. These may be derived as follows from preferences obeying Theorem 1.
If A C S, the upper probability of is p(A) = max{z(A)|r € A}. The
lower probability ofA is p(A) = p(S\ A) = min{x(A)|r € A}. Because of
the authors’ interest in probabilities, their presentation is not in a form con-
venient for economic interpretation, so that | could not replace the structural
theorems of Sect. 2 by citations of their work. These authors tend to focus on
the setk = {x eR5|x > 0} rather than on the preference ordering. The set
K is referred to as the set of desirable or acceptable gambles. Assumptions
are made such thét is a convex cone not intersectilty = {x e R%|x < 0}
or such that the convex hull & does notinterse@®?. It is taken for granted
that no gamble would be accepted unless it were preferred to zero. Thus, the
inertia assumption is implicit. In fact, the authors in statistics seem not to
make any use of the incompleteness of preferences. Williams (1976) does
not even mention incompleteness. It seems to me that Gilboa—Schmeidler
preferences are the most appropriate foundation for the use in statistics of
upper and lower probabilityA normatively sound theory of choice should
be enough for the foundations of statistics. Why should statisticians care
about the descriptive accuracy of the theory of choice they use? Why saddle
statistics with the ambiguities associated with incomplete preferences?

3 Leonid Hurwicz (1951) has made such a suggestion.



Knightian decision theory. Part | 103

There is a large statistical literature on upper and lower probabilities,
which | do not cite. | mention, however, that there is a philosophical liter-
ature which uses upper and lower probabilities to characterize beliefs and
discusses how a rational person ought to relate his beliefs to information
or evidence. General sources in this area are Levi (1980, 1984) and Shafer
(1976). Leamer (1987) has argued that upper and lower probabilities should
be used to present econometric conclusions.

9. Conclusion

Even though one cannot be sure that uncertainty aversion and inertia are
facts of life, one can speculate about their role in economic life. | intend
to indulge in such speculations in future papers for | believe that Knightian
decision theory may explain many puzzling economic phenomena. | here
sketch some possible insights.

One of the consequences of the incompleteness of preferences and un-
certainty aversion is that uncertainty can make very simple programs be
undominated. Apparently excessively simple economic behavior becomes
rational when seen from a Knightian point of view. Examples of such be-
havior are the use of mark-up pricing rules in retail firms (see Cyert and
March (1963), Chap. 7, and Baumol and Stewart (1971)), and the frequent
lack of diversification of individual investment portfolios (see Blume and
Friend (1978)). The same arguments can rationalize the behavioral routines
discussed in Nelson and Winter’s (1982) theory of the firm.

As has already been mentioned in Sect. 5, uncertainty aversion and inertia
can explain reluctance to buy or sell insurance when the probability of loss
is ambiguous. Thus, Knightian behavior may explain the absence of many
markets for insurance and forward contracts.

Uncertainty aversion and inertia can be used to give a rigorous presen-
tation of Knight's theory of the entrepreneur in terms of a general equilib-
rium model. The entrepreneurs are those with fatter cones of preferences or
smaller sets of subjective probabilities.

Knightian decision theory may also offer a possible solution to the vex-
ing question of how to explain wage rigidity, layoffs, and rigid long-term
contracts in general. In fact, | was led to Knightian decision theory by exas-
peration and defeat in trying to deal with these questions using the concepts
of asymmetric information and risk aversion.

| try to give an intuitive explanation of the connection between wage
contracts and Knightian decision theory. | believe that this explanation has
something in common with the ideas of Oliver Williamson (1975, 1985).

Imagine the employees of a firm and the firm’s owners as being locked
in a long-term relationship, with the employees being capable of collective
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action. Leave aside the question of where that capacity comes from. (One
can resort to the theory of repeated games in order to make strikes subgame
perfect.) Suppose the employees and owners have already agreed on a cri-
terion for fair division of the benefits of their relationship. Imagine that the
business prospects of the firm and the value marginal products of labor and
capital are hard to assess. Suppose the two sides have the same objective
information about all relevant matters. If they did not have the same infor-
mation, one would imagine that it would be to their mutual advantage to
share it, since, in models of bargaining, asymmetric information leads to
a Pareto loss. In the context of a long-term relationship, there ought to be
little reluctance to share information, since it should be possible to punish
either side for taking unfair advantage of shared information. Because of the
Knightian uncertainty, it would not necessarily be clear what the agreed-on
criterion of fairness implied, even though there was no asymmetric infor-
mation about observables. Even if the two sides were honest, they could
disagree and no outsider would be able to say who was right. Because of
the ambiguity, there would be room for posturing and falsification of one’s
opinion.

If the only issue at stake were fairness, an arbiter might be used, if one
could be found who understands the complex business situation. But more
than fairness might be at issue, for, if the wage were too high in the opinion
of the owners, then they might be discouraged from investing in the firm,
which would in turn be against the interests of the employees. But, again,
there may be vagueness about the relation between investment and the wage.

This vagueness cannot be resolved by arbitration, for it is important
that the wage be acceptable to the owners. The vagueness must be resolved
by bargaining. But bargaining is meaningless without some loss that can be
imposed to prevent posturing by either side. The role of strikes, lockouts, and
other bargaining costs may be to prevent posturing and to achieve incentive
compatibility in the bargaining process. There is asymmetric information
about each side’s judgment as to an appropriate outcome.

The greater the vagueness, the greater the potential punishments needed
and the more likely it is that they will be imposed. Thus, bargaining costs
increase with vagueness. For this reason, it is valuable to have contracts be
simple; simpler contracts being easier to evaluate. Simplicity may imply
wage rigidity and lack of indexation.

The fact that contracts are long-term may be explained by bargaining
costs resulting from ambiguity. Suppose one had weekly bargaining for
weekly contracts. The incentive for posturing might be as large in bargain-
ing for short-term contracts as for long-term ones. Business conditions and
opinions about them probably change slowly. Therefore, if one side could
succeed in conveying a false impression of its own opinion, this success



Knightian decision theory. Part | 105

would be of value in many future periods. For instance, if the owners once
persuaded their employees that low wages were necessary for the health
of the firm, the workers would be likely to stay convinced for some time.
Thus, the costs of bargaining for each short-term contract could be as high
as the costs of bargaining for a long-term contract. It could, therefore, be
advantageous to have long-term contracts. The same argument can apply, of
course, to any model with bargaining costs which result from asymmetric
information.

In the presence of vagueness, bargaining costs could also be reduced by
resolving disagreements according to some commonly recognized formula.
For instance, the current wage could be the previous one plus some adjust-
ment for changes in productivity and the cost of living. Such an argument
can explain wage rigidity from contract to contract.

Appendix

Proof of Theorem 1. Let K = {x e RS|x > 0}. | show that, forx andy in
RS, x > yifandonlyifx —y e K. By Assumption 5, for alk, y andz in RS
anda €(0,1),y > zifand only if (1 —a)x + ay > (1 — a)x + az. Letting
x = 0, one obtaing > z ifand onlyay > az. Hencey —z > 0=z —2
if and only if (y — 2)/2 = (z — z)/2, which by Assumption 5 is true if and
onlyif y > z.

I next show thatk is a convex, open cone containiﬁj \ {0} ={xe
R5|x > 0}. Now K is convex, for suppose thatandy belong tok and
a €(0,1). Thenax + (1 — o)y > ax, by Assumption 5, because> 0.
Sincex > 0, ax > 0. Hence, by transitivityox + (1 — @)y > 0 or
ax+ (l—a)yeK.AlsoK isacone, forlek € K andr > 0. Ift < 1, then
tx € K by what has already been proved: It 1, thenx = t1(rx) e K
only if tx € K, by what has been proved. By Assumptionk contains
Ri \ {0}. By Assumption 4K is open. By Assumption 3, @ K.

By the Minkowski separation theorem, the fet= {7 : § — [0, 1]|
> ,m = landr - x > O for all x € K} is non-empty andK = {x €
RS | -x > Oforallmr € A}. Consider ther in A to be probability measures
onS. If B is a non-empty subset &f, ey € K and sor(B) = 7 - e > 0
for all w € A. This proves patrt (iii) of the theorem.

By Assumption 1, forx andy in RS and B a non-empty subset o,
x >p yifand only if [T2x > I8y, which is true if and only if£, [x|B] >
E,[y|B] for all = € A. This proves part (i) of the theorem.

In order to prove part (ii), le#t € A and lete > 0 be arbitrarily small.
By Assumptions 2 and Gg(A) + g)es > e4, SO that, for allt € A, 0 <
7-((g(A)+¢8)es —eq) = g(A) +¢e—m(A). Similarly, (g(A) —e)es < ey,
so thatr(A) > g(A) — €. Thereforesr(A) = g(A). 0O
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Proof of Theorem 2. It follows from Assumption 5 that
(Al)if A >V andif0< o < B <1, thenBri+(1—pB)A = ar+(1—a))\ .

By Assumption 7, the orderingsy,, for s € S induce a unique ordefq on
A. By Assumption 1 satisfies Assumptions 3, 4a, 5 and 9. Hence, (Al)
applies to-q. By Assumption 8¢ is complete. Let-g be the indifference
relation associated witk . Since (Al) and Assumptions 3 and 4a apply to
>0 the relation>q is transitive.

Letx andx in X be suchthat <o x <o xforall x € X. ByAssumption 5,
x <o A <o X forall A € A. By Assumption 9x <o x. By (Al) and
Assumption 4a, for each € A, there is a uniqua () € [0, 1] such that
u(M)x + (L — u(d))x ~g A. From Assumption 5 it follows that & « <
1 impliesu(ar + (1 — a))) = au(r) + (L — Au(}). Hence,u(r) =
> exs MU ().

If A e AS, letU(L) e AS be the vector defined by (1), = u(A,)éx +
(1—u(xy))é, forallsesS.

Lemma. If A and A’ belongto AS,theni > A’ ifandonlyif U(x) > U().

Proof of Lemma. Suppose that > A’. By Assumptions 2a and 4a and (Al),
it is possible to choosg” € AS such that” > A’ andi, >, A/ for all

s, andi; > A, for somes. By Assumption 2al/ (1) > A”. Therefore,
U(\) > A/. A similar argument proves that(1) > U(L). The same sort
of argument proves that>= A if U(A) > U(\). O

The proof of Theorem 1 may now be applied to the orderingsre-
stricted to{U (1) |» € A5}, which is isomorphic to a subset &°. The
proof must be modified slightly because now utility levels vary ¢@ed],
whereas in Theorem 1 they varied overoco, +00). 0O

Proof of Theorem 3. For anyt, letS; = {S(s;) N Sr |s; € S;} be the par-
tition of Sy generated by information available at timelLet P, be the
partition of S; generated by,. That is, P, is generated by the function
h:Sr — {g:[]_, A — (00, +00)} defined byh(sr)(as, ... ,ar) =
ri(a;, ... ,ar;st). Forn=t,...,T,letP,, be the partitio E | for some
E'eS,, E =U{E"eP, |[E"NE # @}}. ThenP,, represents information
about the functiom, available at time:. Clearly,?;; = P;. By the indepen-
dence ofs, andr; assumed in the Independence Assumpti®gn,= {S7}.
SinceP; 41 refinesp,, for all n, the partitionsP,;, P 141, ... , P,y from a
tree. Call this tred;.

Let P, be the(T — ¢ + 1)-period decision problendT;, A,, r;/, Q;, A;)
defined as follows. FirstlA,(E) = A, for everyE € 7,. If E € P,y and
a,€A,forn=1t,... T, thenr/(a;, ... ,ar; E) =ri(a, ..., ar;sr) for
somes; € E. FurtherQ, = [[/2'«,, whereQ!, = (o : =/, — S.1}

tn? tn
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andX;, = {(E,, a,) |E, € Py, anda, € A,}. Foro' € Q; and for a program
afor P, let Er(a, ") be a unique member &%, reached ifa is used and
the state of nature i®’. The mapping fromv’ to the functionEr (-, ') is
one-to-one.

Observe that any deterministic prograpfor P, may also be thought of
as defined ow,>, S;, and so may be thought of asta component program
for the decision problen®. That s, ifn > ¢, think of a, as assigning action
a,(E(s,)) tos, €8S,, whereE(s,) is the member of,, containings,,.

I now define the seta,. LetQ' = {we Q| forallz, 7, (a;, s7(a, w)) does
not depend om, for n # ¢}. By the Independence Assumption2’) = 1
forall = € A. Foreach, letP; be the partition of2’ generated by the function
7;. By the Independence Assumption, the partitiBhare independent with
respectta\. LetA(P)) = {m, |, is the restriction ofr to the field generated
by P;, whererr € A}. The partition?; may be identified witr2;. That is,
E € P/ corresponds to the' € @ satisfyingsr(a, w) € Er (&, o) for
all deterministic programs; for P,, wherew is any element off, and
a = (ap,...,ar) is any program for the decision problem satisfying
a, = a’. Let A, = A(P)), whereP, is identified with<2].

The following notation is applied to the problePn If ais a deterministic
program forP, and Er € P, thenr/(a, Er) = r/(a(E,), ... ,a(Er); ET).

If m € A7, thenE,7/(a) = Zw,EQ; (o) (a, Er(a, o)). If y is arandom
program for P, thenr7/(y, Er) and E,7/(y) are defined in the obvious
ways. The functiong, should not be confused with the functionslefined
in Sect. 4.

I now choose a behavioral program for the decision probkerrirst of
all, I select an undominated programfor eachp;. If the zero progrand, is
undominated irP,, lety, = 0,. Otherwise, ley, any undominated program
for P, which dominate$,. If & isin the support 67,, thena, may be thought
of as arth component program for the problePras well. It is therefore also
arth component program for any subproblétx;), whereP (z,) is defined
as in Sect. 4. Thug, defines a randomth component program for each
P(z;). Let B be the behavioral program defined py;) = ¥, for all z;. It
must be shown tha satisfies the Inertia Assumption and is maximal.

| first show thatg has the inertia property. Suppose that# O, so
thaty, dominated), in P;. Letz, € Z and Iet,B(z,) andﬁo(z,) be as in the
definition of the inertia property. Let € A and letr, be the restriction of
m to the field generated b%,. Then,E, [#(B(z:)) — #(Bo(z,)) |z, occurg =
E. [F'(y,) — 7 (0)] > 0O, providedz, occurs with positive probability.

I now show that, for each, there ist, € A, such that, for any random
programy for P,, Ez,7/(y) < Ex7,(¥,). LetC, be the convex hull ofz(a) :
Q) — (—o00, +00) |ais a deterministic program fa, }, whereh(a)(«') =
ri(a, Er(a, ). LetK, = {x : Q@ — (—00,+00) |[Exx > E.7/(y,) for
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all = € A,}. Sincey, is maximal forP;, K, N C, = . Therefore, by the
Minkowski separation theorem, thererige A, such thatEz x > Ez,c for
all x e K, andceC,. Hence,Ez,c < Ez,7,(y,), forall ceC,.

By the Independence Assumption, therg is A such that the restriction
of w to the field generated %y, is 7, for eaclhr and the partition®y, ... , P;
of Q' are mutually independent under

I now show thats is undominated.l must show that, ify is any ran-
dom program forP, then Ex7(y) < E=r(B). Clearly, it is sufficient to
show thatEz7(a) < Exr(B) for any deterministic prograra. Leta =
(2, ... , ar) be fixed. ClearlyE-7(a) = Y., Ex7:(a), whereE#,(a) =
Y eq T(@)F (@, 57(@, ). AlSO, Exf(B) = Y10 Exty(7,) = Yoo ExF|
(v,). Therefore, it is sufficient to prove that7,(a) < E.7/(y,) for anyr.

Letz be fixed and leP; be the partition of2’ defined earlier. LeP; be the
join of the partitionsP, for n # . Then,Ez#,(8) = Y pcp D acpe T(AN
B)Ez[F;(alA N B].LetAePf andB € P,. By the Separation Assumption,
st(a, w)isthe sameforalbe ANB. Lets np = sr(a, w) foranywe ANB.
By the independence property of 7(A|B) = w(A N B)[7,(B)]™! =
T(A). Therefore Exi(8) = 3 pep; T1(B) 2 yepy T(A)1 (8, sanp)-

For A € Pf, define the deterministic program for P, as follows. Let
Er € P;. By the Separation Assumption, there is a unigyec Er N
{s7(a, w) |w € A}. If E, is the member ofP,, which precedes, let
as(E,) = a(s,), wheres, precedesy forn = t,...,T. Recall that;
may be identified withP,. If o' = BeP] = Q}, theni'(as, Er(aa, »')) =
7:(a;, sanp)- It now follows thatZAePf T (A)r(a, sanp), considered as a
function fromQ; = P/ to (—oo, +00), belongs to the set, defined earlier
when definingr,. Therefore, by the defining property ®f, Ex, 7. (y,) >
ZBepr/ 7,(B) ZAGP;- T (A)F (&, sanp) = E=r;(a),aswastobe proved.oO
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