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“It is not clear how to capture knowledge of unawareness directly in the HMS ap-
proach.” Halpern and Rêgo (2012)

1 Introduction

After the development of the foundations of modelling unawareness1, in recent years the focus of
the literature began shifting to applications to game theory2, decision theory3, contract theory4,
speculation5, financial markets6, general equilibrium7, strategic network formation8, business
strategy9, and politics10. However, one foundational question that is of importance to many
potential applications of unawareness remained open: How to model awareness of unawareness
in a tractable way? For instance, Grant and Quiggin (2013) argue that an individual should
inductively infer from past experience and the unawareness of others that it might be possible
that there exists something she herself is unaware of. While models of unawareness allow for
non-trivial unawareness, modelling awareness of unawareness proves to be even harder. There
has been work on reasoning about knowledge of unawareness by for instance Board and Chung
(2011), Halpern and Rêgo (2009, 2012), Sillari (2008a, b), and Halpern and Piermont (2019),
some of which inspired the approach presented in this paper. However, these approaches might
pose a challenge to applied researchers since they either involve a semantics that is not syntax-
free or an additional set of “objects” rather than just events. Instead of requiring applied
researchers to deal with an sophisticated second-order or first-order modal logic of awareness,
it would be desirable to model awareness of unawareness in purely event-based unawareness
structures that are arguably closer to Aumann structures or type spaces familiar to economists.
As Halpern and Rêgo (2012) remark, how to capture awareness of unawareness in event-based
unawareness structures remains open. This paper seeks to fill the gap.

The goal is to come up with a purely event-based structure capable of modelling non-trivial
unawareness of events as well as rich interactive reasoning about knowledge about unawareness
such as “I find it possible that there might exists something that I am unaware of.”, “I know
that there might exist events that she is aware of but I am unaware of.”, “I know that there
might exist events that I am unaware of but both persons 1 and 2 are commonly aware of
but there exists also an event of which person 2 is aware of but I and person 1 are commonly
unaware of.” and “I know that there might exist different events of persons 1 and 2 are
aware of, respectively, but that I am unaware of.” etc.11 All these should be achieved with

1See Fagin and Halpern (1988) for the first paper on the topic, Heifetz, Meier and Schipper (2006, 2008,
2013a) and Halpern and Rêgo (2008, 2012) for work closest to the present paper, and Schipper (2015) for a
survey of the literature on the foundations of awareness.

2See for instance Feinberg (2021), Halpern and Rêgo (2014), Heifetz, Meier, and Schipper (2013b), Meier and
Schipper (2014a), and Schipper (2021).

3See for instance, Karni and Vierø (2013), Schipper (2014), and Dominiak and Tserenjigmid (2018).
4See for instance von Thadden and Zhao (2012), Filiz-Ozbay (2012), Auster (2013), Auster and Pavoni

(2021a), and Francetich and Schipper (2021).
5See Heifetz, Meier, and Schipper (2013a), Meier and Schipper (2014b) and Galanis (2018).
6See for instance Auster and Pavoni (2021b) and Schipper and Zhou (2021).
7See for instance Modica, Rustichini, and Tallon (1998) and Teeple (2021).
8Schipper (2016)
9Bryan, Ryall, and Schipper (2021)

10Schipper and Woo (2019)
11Modeling such a rich reasoning about unawareness cannot be accommodated with less expressive approaches
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minimal modifications to existing unawareness structures. In particular, all standard properties
of unawareness should remain intact. Moreover, it should be consistent with the strong notion
of knowledge stemming from partitional information structures that have been used extensively
in applications throughout economics.

Our starting point are event structures of Heifetz, Meier, and Schipper (2006) which consist
of a complete lattice of state-space together with projections. These spaces are partially ordered
by their “expressiveness”, roughly the richness of the set of events associated with them. For
any space (call it the base-space of the event) and subset of the space (call it the base of the
event), the union of inverse images of this subset constitutes an event. Negation of the event is
defined as the union of the inverse images of the relative complement of the base of the event
w.r.t. the base-space. Conjunction of events is the intersection. Disjunction is defined by the
DeMorgan Law. Knowledge, awareness, and unawareness of events are defined in a standard
way and satisfies by now standard properties (Fagin and Halpern, 1988, Modica and Rustichini,
1999, Dekel, Lipman, and Rustichini, 1998, Heifetz, Meier, and Schipper, 2006, 2008, Li, 2008).

In this paper, the first novel addition is a domain correspondence that maps each state
to a set of all events of some space. Intuitively, the domain correspondence assigns to each
state the domain of discourse. We require that the domain of discourse contains at least
all events that are expressible in the space of the state. However, it can contain even more
events. Those events remain just “statements” at the level of expressiveness associated with
the state. As an example, consider the legend that Inuits have a plethora of words for all kinds
of snow. Envision an average German listen to an Inuit uttering the proposition “Today we got
muruaneq.” The German is not able to relate to this proposition in the sense of even recognizing
it as a proposition (although he may realize that Intuits recognize it has a proposition). He lacks
the background to think about situations in which this statement is true or false. In particular,
he does not realize that it is about some kind of soft deep snow. Yet, he must realize that there
is “something”. Situations like that are abundant in real life. For instance, I still remember
vividly when as an undergraduate student I went to economic seminars in the infamous room
R055 at the University of Bonn. The statements uttered by famous economic theorists did not
make sense to me. Apparently there were statements in the domain of discourse of room R055
that I could not recognize as events but others could. It made me realize that I am unaware
of many things and eventually fueled my quest to become aware. In our structure, the domain
correspondence is precisely our tool to allow reference to statements that at some state may
not be comprehensible yet but could be comprehensible at a state in a more expressive state
space.

The second novel addition is a set of variables X that eventually stand for events in our
structure. The third novel device are general n-ary event operators. These event operators
map n events into an event. These event operators general familiar operations on events. For
instance, the knowledge, awareness, and unawareness operators are all unary event operators
as is negation of events. Conjunction and disjunction of events are event operators etc. The
final novel aspect is the addition of universally quantified events such as given space S, “for all
variables x we have E(x)”, where E(x) is an event operator. At each state in such a quantified
event, the quantifier can range over all events in the domain of discourse at that state. As men-
tioned earlier, this domain might contain events that are not even comprehensible at that state.

to knowledge of unawareness by for instance Ågotnes and Alechina (2007), Walker (2014), and Karni and Vierø
(2017) featuring essentially “catch all” propositions.
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We also add existentially quantified events such as given space S, “there might exist x such that
E(x)”. With this additional structure in place, events like “there might exists something that
i is unaware of” can be simply expressed as a quantified event using the unawareness operator
as the event operator. All standard properties on knowledge, awareness, and unawareness of
Heifetz, Meier, and Schipper (2006, 2008) remain valid in quantified unawareness structures.
Moreover, they extend to quantified events involving knowledge and unawareness of events
under the scope of the quantifier. Awareness “inside” the quantifier is related to awareness
“outside” the quantifier by properties familiar from the Barcan formula in first-order modal
logic. The Barcan property applied to awareness is valid in our structures. Yet, the controver-
sial Barcan formula for knowledge is not valid in our structure unless restrictive assumptions on
the domain correspondence hold, echoing similar observations made in first-order modal logic
(Hughes and Cresswell, 1996, Chapter 15, Fitting and Mendelsohn, 1998, p. 109, 181), or the
individual is aware of everything. Generally the approach presented in this paper can be viewed
as a purely event-based analogue to second-order or first-order modal logic with knowledge and
awareness (Halpern and Rego, 2021, Fine, 1970, Kaplan, 1970, Bull, 1969). This is akin to
Heifetz, Meier, and Schipper (2006) roughly being the purely event-based analogue to Fagin
and Halpern (1988) and Aumann (1999) being the event-based analogue to Kripke structures.

It might be worthwhile considering notions of awareness weaker than the standard notion of
(propositional) awareness. However, the point of the paper is to show that modeling awareness
of unawareness does not require a tweaking of the existing standard notion of unawareness.
This was not obvious ex ante. One of the properties of unawareness is KU-introspection (Dekel,
Lipman, Rustichini, 1998) saying that you never know that you are unaware of an event. (In
the notation of unawareness structures, this is expressed by for any event E, we have the event
KiUi(E) = ∅S(E)). Yet, as we show in Example 2 of Section 3 this does not preclude that you
could know that there might exist something that you are unaware of, Ki(∃SxUi(x)) 6= ∅S .
Another property of unawareness is AU-introspection (Dekel, Lipman, and Rustichini, 1998)
saying that if you are unaware of an event then you are unaware that you are unaware of that
event, Ui(E) ⊆ UiUi(E). Again, this is consistent with being aware that there might exist
something that you are unaware of as in the current paper we can have Ui(E) ∩ UiUi(E) ∩
Ai(∃SxUi(x)) 6= ∅S∧S(E). I.e., you are unaware of the event E, unaware that you are unaware
of E, and you are aware that there might exist something that you are unaware of. This is
also demonstrated in Example 2 of Section 3. We emphasize again that allowing for a rich
notion of awareness of unawareness does not require tweaking of the by now standard notion
of unawareness. It does not mean though that it would not be worthwhile to explore weaker
or alternative notions of unawareness such as in Fukuda (2021) who gives up AU introspection
in order to capture something like awareness of unawareness if structures are infinite. In the
present paper, the ability to model non-trivial awareness of unawareness does not depend on
the cardinality of the state-space.

The present approach can be generalized in a straight-forward way to weaker notions of
knowledge. However, the point of the paper is precisely to show that awareness of unawareness
is consistent with the strong “partitional” notion of knowledge used in many applications in
economics. This is similar to Heifetz, Meier, and Schipper (2006) who show that modeling
unawareness of events does not require a weakening of the notion of knowledge but can be
consistent with the strong “partitional” notion of knowledge. It does not mean though that
it would not be worthwhile to investigate generalizations of our approach to weaker notions
of knowledge, such as giving up the truth property (Halpern and Rêgo, 2008, Board, Chung,
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and Schipper, 2011), positive and weak negative introspection (Halpern and Rêgo, 2008), or
weakening projective properties of the possibility correspondence as in Galanis (2013).

The paper is organized as follows: The next section introduces quantified unawareness
structures. This is followed by an illustration with an application to consulting with expert(s)
in Section 3. I conclude with a discussion in Section 4. Proofs are relegated to the appendix.

2 Quantified Unawareness Structures

As in Heifetz, Meier, and Schipper (2006), we consider a complete lattice of nonempty disjoint
spaces S = {S`}`∈L with a partial order � and surjective projections rS

′
S : S′ −→ S for S′, S ∈ S

with S′ � S such that for all S ∈ S, rSS = idS . Projections commute, i.e., for all S′′, S′, S ∈ S
with S′′ � S′ � S, rS

′′
S = rS

′
S ◦ rS

′′
S′ . We denote by Ω :=

⋃
`∈L S` and by ωS := rS

′
S (ω) when

ω ∈ S′ with S′ � S. Sometimes we denote by Sω the space S ∈ S for which ω ∈ S.

States in each space represent alternative descriptions of world. Descriptions can be more
or less rich depending on the richness of the set of events used to describe them. That’s why
spaces differ in the expressiveness as indicated by the partial order. States in a more expressive
space use a richer set of events to describe states than states in less expressive space. However,
for any subset of spaces, we can find a space that contains all events in all spaces of the subset,
and a space which contains only those events contained in every one space of the subset. This
corresponds to the join and meet respectively and makes the set of spaces into a complete
lattice. Given a state in some space, we can consider the version in a less expressive space.
This corresponds to a description of the same world except that we miss events not expressible
in the less expressive space. This naturally defines the projections.

For any S ∈ S and D ⊆ S, denote by D↑ :=
⋃

S′�S

(
rS
′

S

)−1
(D). An event E ⊆ Ω is a set of

states such that there is a base D ⊆ S for some S ∈ S and E := D↑. We call S the bases-space
of E and denote it by S(E). The definition of event is clear unless the event is empty. Thus,
for each S ∈ S we denote by ∅S the empty event with base-space S. If E is an event with base
D ⊆ S, then ¬E := (S \D)↑. If E and F are both events, then the conjunction of the events
is simply E ∩F . Moreover, disjunction of events, denoted by E ∪F , is defined by ¬(¬E ∩¬F )
(using the above definition of negation). For any space S, denote by Σ(S) the set of events
with base-space S′ � S. Clearly, for any S, S′ ∈ S with S′ � S we have Σ(S′) ⊆ Σ(S). If S
is the join of the lattice, then we denote by Σ = Σ(S̄) the set of all events in the lattice. The
meet of the lattice we denote by S. We refer to Heifetz, Meier, and Schipper (2006, 2008) for
more details on the event structure.

An event is a subset of worlds characterized by something particular happening. Of course,
this happening should be expressible in those states. However, if it is expressible in some space
then it is also expressible in more expressive spaces. That’s why an event is defined as the
collection of the subset of states (i.e., the base) in some space (i.e., the base-space) and its
inverse images in all more expressive spaces. To define the negation of an event, one cannot
simply take the relative complement w.r.t. the union of all spaces as this would also collect
states where the event and its negation is not even expressive. Instead, one must take the
relative complement of the base w.r.t. the base-space and the union of inverse images thereof.

We extend the unawareness structure of Heifetz, Meier, and Schipper (2006) by allowing for
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quantification. Let X be a countably infinite set of variables. We will allow for quantification
over these variables. These variables take values in the domain of events to be specified.

For any space S ∈ S and finite n, we denote E(x1, ...., xn) the S-based n-ary event operator.
If x1, ..., xn ∈ X of E(x1, ...., xn) are replaced by events F1, ..., Fn ∈ Σ, then E(F1, ..., Fn) is
an event with base-space S ∨

∨n
k=1 S(Fk). For instance, the unary event operator E(x) = x

is a S-based operator. For any event F ∈ Σ, E(F ) = F is the S ∨ S(F ) = S(F ) based-
event. Similarly, E(x) = ¬x is a S-based operator. For any event F ∈ Σ, E(F ) = ¬F is the
S∨S(F ) = S(F ) based-event. Jumping ahead, the knowledge, awareness, unawareness, mutual
knowledge, common knowledge, mutual awareness, and common awareness operators defined
later in the text are S-based unary event operators. The base space of events is another example
of a unary event-based operator with base S when considering it as the universal event S(x)↑.
For any event E, we denote the base-space of E by S(E) and the corresponding universal event
is S(E)↑, an event with base space S(E)∨S = S(E). According to the definition, also the event
operator itself as a base-space. The importance of the base-space of the operator E(x) can be
illustrated with the operator defined by: For a fixed event F ∈ Σ, define the S(F )-based unary
operator E(x) = F ∩ x. For any event G ∈ Σ, E(G) = F ∩G is the S(F ) ∨ S(G) based event.
As a final example, conjunction E(x1, x2) = x1 ∩ x2 is an example of the S-based binary event
operator. For any pair of events F,G ∈ Σ, E(F,G) = F∩G is the S∨S(F )∨S(G) = S(F )∨S(G)
based event.

Define a domain correspondence D : Ω −→ {Σ(S)}S∈S such that,12

(i) for all S ∈ S, ω ∈ S implies D(ω) ⊇ Σ(S),

(ii) D(ωS) ⊆ D(ω) for all ω ∈ Ω and S � Sω.

The domain correspondence assigns to each state a domain of discourse. This is a set of events
that contains at least the set of events that are expressible in the “language” associated with
the space of which the state is an element of. That is, at each state the domain of discourse
is as least as rich as the language associated with the state. Yet, it may contain more events
even though these events cannot be evaluated w.r.t. whether or not they obtain in the space
of which the state is an element of. Intuitively, the domain of discourse at a state may contain
statements that are not meaningful events expressible in the state space of that state. In
the introduction we mentioned as examples of such statements propositions involving the rich
vocabulary of Inuits for various kinds of snow that would not be comprehensible to people
lacking the background of living in the Arctic.

For each space S ∈ S, we devise a universal quantifier ∀S quantifying over variables. These
variables range over at least all events that are associated with the space S since the domain
of discourse D(ω) at any state in ω ∈ S must contain at least all events expressible in S,
Σ(S) ⊆ D(ω) However, these variables may also quantify of statements inD(ω)\Σ(S). These are
events that are not comprehensible at S but are comprehensible at some space more expressive

12In some applications, one may want to impose that for any S ∈ S the set of states [Σ(S)] := {ω ∈ Ω :
Σ(S) ⊆ D(ω)} forms an event in the unawareness structure. In such a case, [Σ(S)] is the event that the domain
of discourse contains at the least the events in Σ(S). This assumption would allow individuals to interactively
reason about the domain of discourse. We will not impose this property in general though. As in real life, the
domain of discourse is always present in the background of any thoughts or conversations but rarely itself the
object of thoughts and conversations.
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than S. For each event operator E(x) and space S ∈ S we define the universally quantified
event

∀SxE(x) :=

ω ∈ S↑ : {ω}↑ ∩ S

 ⋂
F∈D(ω)

E(F )

 ⊆ ⋂
F∈D(ω)

E(F )

 .

In words, we interpret this event as “given S, for all events x we have E(x)”. To understand
this definition given on the right-hand side, ignore for the moment the object in the middle,
S(...), and note that it essentially reads “ω is in

⋂
F∈D(ω) E(F )”. That is, ω should imply event

E(F ) for all F ∈ D(ω). The problem of course is that these events E(F ) may not even be
expressible at the level of ω. That’s why we “lift” ω to the level at which all events E(F ),
F ∈ D(ω), are expressible, which is the base space of S(

⋂
ω∈D(ω) E(F )). The definition now

says that the inverse image of ω in the base space of the conjunction
⋂

ω∈D(ω) E(F ) must be
in that conjunction. Note that if the domain of discourse D(ω) at ω would contain only events
expressible in Sω, then we would not need to lift ω. Yet, as we discussed above, D(ω) may
also contain statements not comprehensible given Sω. Note that by definition, ∀SxE(x) is an
S-based event.

The existential quantifier is defined us usual using the universal quantifier and (our notion
of) of negation. For each event operator and space S ∈ S,

∃SxE(x) := ¬∀Sx¬E(x).

We interpret it as “given S there might exist an event x for which E(x)”. In Appendix A
we further discuss the definition of quantifiers including characterizations and clarify why we
interpret it “given S there might exist an event x for which E(x)” rather than “given S there
exists an event x for which E(x)”.

If the lattice of spaces is a singleton, i.e., we just have a standard state-space, then simply
∀xE(x) =

⋂
F∈Σ E(F ) and ∃xE(x) =

⋃
F∈Σ E(F ). When the lattice of spaces is non-trivial,

then these formulas hold for the join of the lattice, S.

Lemma 1 For the join of the lattice, S,

∀SxE(x) =
⋂
F∈Σ

E(F )

∃SxE(x) =
⋃
F∈Σ

E(F )

The proof is immediate upon realizing that the properties of the domain correspondence
imply that for all ω ∈ S we must have D(ω) = Σ. We show with a counterexample below that
the observation does not extend necessarily to less expressive spaces of the lattice.

The short proof of the following standard identities and implications are contained in the
appendix.

Lemma 2 For any space S ∈ S any event operators E(x) and F (x),

∀SxE(x) ∩ ∀SxF (x) = ∀Sx(E(x) ∩ F (x))

∃SxE(x) ∪ ∃SxF (x) = ∃Sx(E(x) ∪ F (x))

7



Lemma 3 For any space S ∈ S and any event operator E(x),

∀Sx¬E(x) ⊆ ¬∀SxE(x)

¬∃SxE(x) ⊆ ∃Sx¬E(x)

The analogue of following properties correspond to typical axioms in some first-order logics:

Lemma 4 The following properties hold:

(i) For any space S ∈ S and any event operators E(x) and F (x)

∀Sx(¬E(x) ∩ F (x)) ⊆ ¬∀SxE(x) ∩ ∀SxF (x).

(ii) For any S′-based event operator E(x) and S � S′

∀SxE(x) ⊆ E(F )

for any event F with base-space S(F ) such that S � S(F ).

The proof of the next lemma is immediate for the case of S or a singleton lattice of spaces.
More generally, it follows for any S ∈ S from the definitions.

Lemma 5 For any event operators, E(x) and F (x), if E(G) ⊆ F (G) for all G ∈ Σ, then for
any S ∈ S,

∀SxE(x) ⊆ ∀SxF (x)

∃SxE(x) ⊆ ∃SxF (x)

In Appendix A we present counterexamples that prove the following remark.

Remark 1 For any S, S′ ∈ S with S′ � S and any event operator E(x), the event ∃S′xE(x)
is unrelated to the event ∃SxE(x) and the event ∀S′xE(x) is unrelated to the event ∀SxE(x).

Next we introduce the notion of individual knowledge. Fix a set of individuals I. As
in Heifetz, Meier, and Schipper (2006), for each i ∈ I there is a possibility correspondence
Πi : Ω −→ 2Ω such that

(0) Confinement: If ω ∈ S then Πi(ω) ⊆ S′ for some S′ � S.

(i) Generalized Reflexivity: ω ∈ Π↑i (ω) for every ω ∈ Ω.

(ii) Stationarity: ω′ ∈ Πi(ω) implies Πi(ω
′) = Πi(ω).

(iii) Projections Preserve Ignorance: If ω ∈ S′ and S � S′ then Π↑i (ω) ⊆ Π↑i (ωS).

(iv) Projections Preserve Knowledge: If S � S′ � S′′, ω ∈ S′′ and Πi(ω) ⊆ S′, then (Πi(ω))S =
Πi(ωS).
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For each state, the possibility correspondence of individual i assigns a subset of states that
individual i finds possible, the possibility set at that state. It should satisfy some properties to
rule out nonsensical interpretations and mistakes in formation processing. The possibility set
must be a subset of one space that, as we will see later, can be awareness level of the individual
(Confinement). The individual should not be deluded although she may be unaware of some
events (Generalized Reflexivity). The individual should not make mistakes in information
processing (Stationarity). Finally, possibility sets across spaces at corresponding states model
the same knowledge and ignorance modulo awareness (Projections Preserve Knowledge and
Ignorance).

For each i ∈ I, define the knowledge operator as in on events as in Aumann (1999) by

Ki(E) := {ω ∈ Ω : Πi(ω) ⊆ E},

if there is a state ω such that Πi(ω) ⊆ E, and by Ki(E) := ∅S(E) otherwise. For each event
E, Ki(E) is the set of states in which individual i considers the event E possible. Heifetz,
Meier, and Schipper (2006, Proposition 1) show that for any event E, the set Ki(E) is an
S(E)-based event. For each i ∈ I, define also the awareness and unawareness operator on
events, respectively by

Ai(E) := Ki(S(E)↑)

Ui(E) := ¬Ai(E)

The event Ai(E) is the set of states in which individual i knows tautologies that can be ex-
pressed with the base-space of event E. We could have defined unawareness of an event E as
in Modica and Rustichini (1999) by Ui(E) = ¬Ki(E) ∩ ¬KiKi(E). This is the event in which
the individual does not know E and does not know that she does not know E. This definition
in equivalent given the properties of the possibility correspondence. We refer to Heifetz, Meier,
and Schipper (2006, 2008) for all the standard properties satisfied by knowledge, awareness,
and unawareness in unawareness structures. Note that the knowledge operator, awareness op-
erator, and unawareness operator are all S-based event operators according to the terminology
introduced earlier.

The following observations are immediate corollaries of Lemma 5 and Heifetz, Meier, and
Schipper (2006, Propositions 2 and 3). Essentially, all standard properties of knowledge, aware-
ness, and unawareness of unawareness structures are preserved under quantifiers.

Corollary 1 For any i ∈ I, event operators E(x), E1(x1), E2(x2), ..., and space S,

1. Monotonicity under Quantifiers: ∀SxE(x) ⊆ ∀SxF (x) implies ∀SxKi(E(x)) ⊆ ∀SxKi(F (x))

2. Distribution under Quantifiers: ∀Sx1, x2, ...Ki

(⋂
n=1,2,...En(xn)

)
⊆
⋂

n=1,2,... ∀SxnKi(En(xn))

3. Truth under Quantifiers: ∀SxKi(E(x)) ⊆ ∀SxE(x)

4. Positive Introspection under Quantifiers: ∀SxKi(x) ⊆ ∀SxKi(Ki(x))

5. Generalized Negative Introspection under Quantifiers I: ∀Sx(¬Ki(x)∩Ai(x)) ⊆ ∀SxKi(¬Ki(x))

6. Generalized Negative Introspection under Quantifiers II: ∀Sx(¬Ki(x) ∩ ¬Ki¬Ki(x)) ⊆
∀Sx¬Ki¬Ki¬Ki(x)

9



All properties above hold also when all ∀S are replaced by ∃S.

Corollary 2 For any i ∈ I, event operators E(x), E1(x1), E2(x2), ..., and space S,

1. Quantified Plausibility: ∃SxUi(x) = ∃Sx(¬Ki(x) ∩ ¬Ki¬Ki(E(x)))

2. Quantified Strong Plausibility: ∃SxUi(x) = ∃Sx
⋂∞

n=1(¬Ki)
n¬Ki(E(x))

3. Quantified KU Introspection: ∃SxKiUi(x) = ∅S

4. Quantified AU Introspection: ∃SxUi(x) = ∃SxUiUi(x)

5. Quantified Weak Necessitation: ∃SxAi(x) = Ki(S
↑)

6. Quantified Symmetry: ∃SxAi(E(x)) = ∃SxAi(¬E(x))

7. Quantified A-Conjunction: ∀Sx1, x2, ...Ai

(⋂
n=1,2,...En(xn)

)
⊆
⋂

n=1,2,... ∀SxnAi(En(xn))

8. Quantified AK-Self-Reflection: ∃SxAi(E(x)) = ∃SxAiKi(E(x))

9. Quantified AA-Self-Reflection: ∃SxAi(E(x)) = ∃SxAiAi(E(x))

10. Quantified A-Introspection: ∃SxAi(E(x)) = ∃SxKiAi(E(x))

All properties above hold also when all ∃S are replaced by ∀S.

Previous properties pertain to knowledge, awareness, and unawareness “inside” the quanti-
fier. What about properties connecting modal operators “outside” and “inside” the quantifier?
In quantified modal logic, the so called Barcan formulas establish such a connection. We can
show that the Barcan property holds naturally for awareness. The proof is contained in the
appendix.

Proposition 1 (Barcan Property for Awareness) For any individual i ∈ I, space S ∈ S,
and event operator E(x),

∀SxAi(E(x)) ⊆ Ai∀SxE(x).

That is, if at space S for all x individual i is aware of E(x) then the individual is aware
that for all x we have E(x).

The Barcan formula for knowledge does not hold unless the discourse correspondence is
measurable w.r.t. the possibility correspondence.

Proposition 2 (Barcan Property for Knowledge) For any individual i ∈ I if for any ω ∈
Ω, ω′ ∈ Πi(ω) implies that D(ω′) ⊆ D(ω), then for any space S ∈ S and event operator E(x),

∀SxKi(E(x)) ⊆ Ki∀SxE(x).
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Under the measurability condition, given the space S, if for all x the individual i knows
E(x) then she knows that for all x we have E(x). The measurability is sufficient but not
necessary. This is demonstrated in Example 1 below. The proof of Proposition 2 is contained
in the appendix. It relies on generalized reflexivity (i.e., truth) and stationarity (i.e., positive
introspection). Note that the condition ω′ ∈ Πi(ω) implies that D(ω′) ⊆ D(ω) can be replaced
by ω′ ∈ Πi(ω) implies that D(ω′) = D(ω) since we assume stationarity anyway. This condition
is undesirable as it precludes uncertainty about the domain of discourse. We will not assume
this condition for the remainder of the paper. Note though that in the most expressive space,
S, D(ω) = Σ for all ω ∈ S. The domain correspondence must be constant in the upmost space.
Thus, the Barcan formula for knowledge holds in the join space of the lattice:

Corollary 3 (Barcan Formula for Knowledge in the Most Expressive Space) For any
individual i ∈ I and event operator E(x),

∀SxKi(E(x)) ⊆ Ki∀SxE(x).

The previous observations suggest that uncertainty about the domain of discourse is required
to model the possibility that there exist statements to be unaware of. We like to allow for
nonempty events like

¬Ki∃SxUi(x) ∩ ¬Ki∀SxAi(x).

Individual i does not know whether there might exist a statement that she is unaware of and
she does not know whether she is aware of all events. That is, she considers it possible that she
is unaware of a statement but she is not sure about it. The following example illustrates such
a state of mind.

Example 1 (Possibility of Being Unaware of Something) Consider the unawareness
structure of Figure 1. There are two spaces. In the upper space, Sq, there are two states, one
for q and one for ¬q. The domain of discourse is Σ(Sq) in both states. The lower space, S,
features no proposition, i.e., an empty description. The two states just differ by the domain
of discourse. Projections are indicated by dashed lines. There is just one individual whose
possibility correspondence is depicted by the blue ovals and arrows. No matter the state, the
possibility set is on S and comprises of both states in S. Let [q] be the event that q. I.e.,
[q] = {(q,Σ(Sq))}. It is easy to verify that Ai([q]) = {ω ∈ Sq : Πi(ω) ⊆ [q]} = ∅Sq since the
only possibility set is on S. Thus, Ui([q]) = Sq. Trivially, we have Ai(Ω) = Ω.

It is also easy to verify that ∃SxUi(x) = {(∅,Σ(Sq))}↑. In particular, the inverse image of
state (∅,Σ(Sq)) in Sq, state (q,Σ(Sq)) is in Ui([q]). Thus, at (∅,Σ(Sq)) there exist an event
that individual i is unaware of. In contrast, ∀SxAi(x) = {(∅,Σ(S))}↑. At state (∅,Σ(S)), the
individual is aware of all events in the less expressive space, S. Since there are no other state-
ments in the domain of discourse at state (∅,Σ(S)), she is aware of all events at state (∅,Σ(S)).
Note that with the only possibility set, the individual cannot distinguish between (∅,Σ(Sq)) and
(∅,Σ(S)). Thus, both Ki∃SxUi(x) = ∅S and Ki∀SxAi(x) = ∅S . Hence, both ¬Ki∃SxUi(x) = Ω
and ¬Ki∀SxAi(x) = Ω. It follows that ¬Ki∃SxUi(x)∩¬Ki∀SxAi(x) = Ω. That is, in this simple
structure it is always the case that individual i considers it possible that she is unaware of some
statement. Moreover, she is introspective about it, i.e., Ki(¬Ki∃SxUi(x)∩¬Ki∀SxAi(x)) = Ω.

In fact, the only event that is known by individual i in this unaware structure is the simplest
tautology, Ω. Thus, the Barcan property for knowledge is trivially satisfied in this unawareness

11



Figure 1: Possibility of Being Unaware of Something

structure despite allowing for uncertainty about the domain of discourse in the lowest space,
S. This demonstrates that the condition of the domain correspondence being measurable w.r.t.
the possibility sets in Proposition 2 is not a necessary condition for the Barcan property of
knowledge to hold. �

The Barcan formula for awareness implies as a property on unawareness “inside” and “out-
side” the existential quantifier. The short proof is contained in the appendix.

Corollary 4 For any individual i ∈ I, space S ∈ S, and event operator E(x),

Ui∃SxE(x) ⊆ ∃SxUi(E(x))

Typically the converse Barcan formula (for knowledge) is valid in first-order modal logic.
However, in Appendix B we show by example the following:

Remark 2 The converse Barcan property for awareness, Ai∀SxE(x) ⊆ ∀SxAi(E(x)) does not
hold. Equivalently, ∃SxUi(E(x)) ⊆ Ui∃SxE(x) does not hold.

The fact that the converse Barcan property for awareness does not hold is not a defect but
a blessing! Suppose to the contrary that it would hold, i.e., Ai∀SxE(x) ⊆ ∀SxAi(E(x)). Then
an implication is the following: ∃SxUi(E(x)) ⊆ Ui∃SxUi(E(x)) (see the proof of Remark 2 in
the appendix). That is, if there might be an event of which the individual is unaware then she
could never be aware of that fact! This is certainly not a desirable property and it does not
hold in our structure.

One may wonder whether Barcan style formulas hold when the universal quantifier is re-
placed by the existential quantifier. This is not the case. The following remark is proved in
Appendix B.

Remark 3 Property ∃SxAi(E(x)) ⊆ Ai∃SxE(x) does not hold. Equivalently, Ui∀SxE(x) ⊆
∀SxUi(E(x)) does not hold.
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Yet, the converse properties mentioned in Remark 3 hold. The proof follows from arguments
made in the proof of Remark 3 contained in Appendix B.

Remark 4 For any individual i, space S ∈ S, and event operator E(x),

Ai∃SxE(x) ⊆ ∃SxAi(E(x)),

and, equivalently,
∀SxUi(E(x)) ⊆ Ui∀SxE(x).

We record some further properties of quantified awareness and unawareness, which are
proved in the in Appendix B.

Proposition 3 Recall that S and S denote the meet and join of lattice S, respectively.

1. Never unaware of everything: For any space S ∈ S,

∀SxUi(x) = ∅S or, alternatively, ∃SxAi(x) = S↑

2. FA: For all spaces S ∈ S,
∀SxUi(x) ⊆ Ki(∀SxUi(x))

3. In the least expressive space, awareness of unawareness always obtains:

Ai

(
∃SxUi(x)

)
= Ω

4. For each space, awareness of unawareness is awareness of tautologies: For all S ∈ S,

Ai (∃SxUi(x)) = Ai(S
↑)

5. In the most expressive space, knowledge of full awareness is knowledge of tautologies:

Ki

(
∀SxAi(x)

)
= Ki(S)

The first property says that an individual can not be unaware of all events. That’s intuitive
because she should be aware of at least the simplest tautology, Ω. Equivalently, it is always the
case that there exists an event of which she is aware of, namely, the simplest tautology.

Property FA has been imposed as an axiom in Halpern and Rêgo (2012). It says that given
any space S, if for all x individual i is unaware of x then she knows that for all x she is unaware
of x. It holds trivially in our structures since both sides of the inclusion relation are vacuous
events.13

Property 4 says that you are aware that you are unaware of something possibly beyond the
language Σ(S) exactly in the states in which you are aware of all events in Σ(S). It does not
mean that you are unaware of something beyond the language Σ(S) or that you know that you

13Halpern and Rêgo (2012) also propose a weakening of the Barcan formula. In our setting, this weakening
reads Ai(∀SxE(x)) ∩ ∀Sx(Ui(x) ∩Ki(E(x))) ⊆ Ki(¬∀SxAi(x) ∩ ∀SxE(x)). This property holds trivially in our
structure as Ui(F ) ∩Ki(E(F )) = ∅S(F ) and thus the antecedent reduces to ∅S .
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are unaware of something beyond the language Σ(S). It just means that you can reason about
being unaware of something beyond the language Σ(S). Recall that in unawareness structures,
an individual may not be aware of all tautologies.

Property 3 is a direct implication of Property 4. In the least expressive space you are always
aware that there could be something that you are unaware. This is because you are always
aware of all events in the lowest space. Again, it does not mean that you are indeed unaware
of something or that you know that you are unaware of something.

Finally, property 5 says that in the upmost space, knowing that you are aware of everything
is knowing most complicated tautologies. That is, if you know every theorem there is to know
then you know that you are aware of everything and vice versa. Recall that in unawareness
structures an individual typically will not know always all tautologies (unless it is the event Ω).

Before we finish this section, we turn to some multi-agent notions such as mutual and
common knowledge and awareness.

Define the mutual knowledge operator on events by for any E ∈ Σ,

K(E) :=
⋂
i∈I

Ki(E)

and the common knowledge operator by

CK(E) :=

∞⋂
n=1

Kn(E).

These operator are like in Aumann (1999). Analogously, define the mutual awareness operator
on events by for any E ∈ Σ,

A(E) :=
⋂
i∈I

Ai(E)

and the common knowledge operator by

CA(E) :=
∞⋂
n=1

An(E).

We record some multi-agent properties.

The following observations are corollaries of Lemma 5 and Heifetz, Meier, and Schipper
(2008, Proposition 11).

Corollary 5 For any individuals i, j ∈ I, space S ∈ S and event operator E(x),

1. ∃SxAi(x) = ∃SxAiAj(x)

2. ∃SxAi(x) = ∃SxAiKj(x)

3. ∃SxKi(x) ⊆ ∃SxAiKj(x)

4. ∃SxA(x) = ∃SxK(S(x)↑)

5. ∃SxA(x) = ∃SxCA(x)
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6. ∃SxK(x) ⊆ ∃SxA(x)

7. ∃SxCK(x) ⊆ ∃SxCA(x)

8. ∃SxCK(S(x)↑) ⊆ ∃SxCA(x)

These properties hold also when ∃S is replaced by ∀S.

The proof of following proposition on the Barcan formula for mutual and common awareness
is analogous to the proof of Proposition 1.

Proposition 4 (Barcan formula for mutual and common awareness) For any space S ∈
S and event operator E(x),

∀SxA(E(x)) ⊆ A∀SxE(x)

∀SxCA(E(x)) ⊆ CA∀SxE(x)

The proof of following proposition on the Barcan formula for mutual and common knowledge
is analogous to the proof of Proposition 2. Note that the domain of discourse must now be
constant within the possibility set of each individual. This is a much stronger assumption than
the assumption in Proposition 2.

Proposition 5 (Barcan formula for mutual and common knowledge) Assume that for
all i ∈ I, ω′ ∈ Πi(ω) implies D(ω′) ⊆ D(ω). Then for any space S ∈ S and event operator
E(x),

∀SxK(E(x)) ⊆ K∀SxE(x)

∀SxCK(E(x)) ⊆ CK∀SxE(x)

We do not assume in this paper that for all i ∈ I, ω′ ∈ Πi(ω) implies D(ω′) ⊆ D(ω).

3 Illustration: Consulting with Experts

In many situations in real life we consult with experts, not just because they may have better
information than we have but often because they are aware of things that we are unaware of.
For instance, we may consult with a doctor not just because she might know whether or not we
have a particular decease but also because she may be aware of certain deceases or treatments
that we are not. Even general practitioners may refer us to specialists not just for the latter’s
better information but also greater awareness. We may consult with a lawyer who might sug-
gest us an action that we have not thought about previously. Governments maintain scientific
advisory bodies with an option to harness their wisdom. Music instrument teachers may imme-
diately recognize our bad habits that hold us back that we may not even be aware of. Editors of
scientific journals ask referees to access the novelty of the piece of research presumably because
editors cannot be aware of all the research out there. Etc.
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Example 2 (Individual 1 knows that individual 2 is aware of something that she is
unaware of) Suppose individual 1 wants to consult individual 2 but only when she knows that
individual 2 is an expert in the sense of being aware of something that individual 1 is unaware
of. That is, she will consult individual 2 only in the event K1∃Sx(U1(x)∩A2(x)). The simplest
unawareness structure modelling this event in a non-trivial way is depicted in Figure 2.

Figure 2: Unawareness Structure of Example 2

There are two spaces, Sq and S, each having two states. Projections are indicated by faint
dotted lines. The possibility correspondence of person 1 is depicted in blue circles and arrows,
the possibility correspondence of person 2 with green dashed circles and arrows. In each state,
person 2 knows the state. Person 1 is unaware of all events in space Sq. Her possibility sets
at states in Sq are in the space S. Thus, U1([q]) = Sq but A2([q]) = Sq. At state (∅,Σ(Sq)),
individual 1 can reason about “things” she is not aware of because her domain of discourse is
Σ(Sq) with events she is not aware of at (∅,Σ(Sq)). We got ∃Sx(U1(x)∩A2(x)) = {(∅,Σ(Sq))}↑.
Since at state (∅,Σ(Sq)), individual 1 knows {(∅,Σ(Sq))}↑, we got K1(∃Sx(U1(x) ∩ A2(x))) =
{(∅,Σ(Sq))}↑. We can say more. Person 2 knows that as K2K1(∃Sx(U1(x) ∩ A2(x))) =
{(∅,Σ(Sq))}↑. In fact, at that state, it is common knowledge that person 2 is aware of something
that person 1 is unaware, i.e., CK(∃Sx(U1(x) ∩A2(x))) = {(∅,Σ(Sq))}↑.

We noted that in above model, individual 1 is unaware of [q] in all states of Sq, i.e.,
U1([q]) = Sq. She satisfies KU-introspection, K1U1([q]) = ∅Sq . Yet, we have K1(∃SxU1(x)) =
{(∅,Σ(Sq))}↑. This is an example of our claim in the introduction that KU introspection of an
event does not rule out that the individual knows that there might exist something that she is
unaware of. Similarly, we have AU-introspection, U1([q]) = U1U1([q]) but U1([q]) ∩ U1U1([q]) ∩
A1(∃SxU1(x)) = {(q,Σ(Sq))}. That is, AU-introspection does not rule out that an individual is
unaware of an event, unaware that she is unaware of the event, and at the same time is aware
that there might exist something that she is unaware of. This demonstrates the claim made in
the introduction that AU-introspection does not rule out that an individual is aware that there
might exist something she is unaware of. �

Example 3 (Individual 1 knows that both individuals 2 and 3 are aware of some-
thing that she is unaware of but only individual 3 is also aware of something that
individual 2 is unaware of. Despite that, individual 1 knows that individual 2 knows
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something that individual 3 does not.) Now we consider three individuals and want to
express events like K1(∃Sx(U1(x)∩A2(x)∩A3(x))∩∃Sx(U1(x)∩U2(x)∩A2(x))), i.e., individual
1 knows that there exists something that she is unaware of but individuals 2 and 3 are aware
of and that there exists something that she and individual 2 is unaware of but individual 2 is
aware of. To this end, consider the quantified unawareness structure in Figure 3.

Figure 3: Unawareness Structure of Example 3

There are three spaces totally ordered, Spq � Sq � S. Person 1’s possibility correspondence
is depicted with blue solid-lined arrows and ovals, person 2’s with green intermitted arrows
and ovals, and person 3’s with red dot-lined ovals. Since all possibility sets of person 1 lie in
space S, she is unaware of events [q] = {(q,Σ(Spq)), (q,Σ(Sq)), (pq,Σ(Spq)), (¬pq,Σ(Spq))} and

[p] = {(pq,Σ(Spq)), (p¬q,Σ(Spq))}. That is, U1([q]) = S↑q and U1([p]) = Spq. In contrast, in all

states in Spq or Sp, person 2 is aware of the event [q]. I.e., A2([q]) = S↑q . Person 3 is aware

of the event [p] in all states in Spq and of the event [q] in all states in S↑q . I.e., A3([p]) = Spq,

A3([q]) = S↑q .

Now consider the least expressive space. We have ∃Sx(U1(x)∩A2(x)∩A3(x)) = {(∅,Σ(Spq), (∅,Σ(Sq)}↑.
This is, the event that there might exist something that person 1 is unaware of but persons
2 and 3 are aware of. Further, we have ∃Sx(U1(x) ∩ U2(x) ∩ A3(x)) = {(∅,Σ(Spq)}↑. This is
the event that there might exist something that person 1 and 2 are unaware of but person 3
is aware. Thus, ∃Sx(U1(x) ∩ A2(x) ∩ A3(x)) ∩ ∃Sx(U1(x) ∩ U2(x) ∩ A3(x)) = {(∅,Σ(Spq)}↑.
This is the event that there might exist something that person 1 is unaware of but both per-
sons 2 and 3 are aware of and there might exist something that persons 1 and 2 are unaware
of but person 3 is aware of. Since at (∅,Σ(Spq), person 2 just considers this state possi-
ble, we have K1(∃Sx(U1(x) ∩ A2(x) ∩ A3(x)) ∩ ∃Sx(U1(x) ∩ U2(x) ∩ A3(x))) = {(∅,Σ(Spq)}↑.
That is, person 1 knows that person 3 is a better expert in terms of awareness than per-
son 2. (The event that there might exist an event that person 2 is aware of something that
person 3 is unaware of is empty.) But is person 3 also a better expert in terms of knowl-
edge? Note that person 2 knows whether the event [q] obtains. That is, if [q] obtains,
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then person 2 knows that and if ¬[q] obtains, then person 2 knows that too. Thus, person
2 could be really called an expert on [q]. In contrast, person 3 has no such knowledge nei-
ther w.r.t. to event [q] nor event [p]. More formally, K2([q]) = [q] = {(q,Σ(Spq)), (q,Σ(Sq))}↑
while K3([q]) = ∅Sq . We have ∃Sx(K2(x) ∩ ¬K3(x)) = {(∅,Σ(Spq))}↑. Person 1 knows that,
K1(∃Sx(U1(x) ∩ K2(x) ∩ ¬K3(x))) = {(∅,Σ(Spq))}↑. So even though person 1 realizes that
there might exist an event that only person 3 is aware of, she also realizes that person 2 knows
something that person 3 does not. Hence, engaging both experts, persons 2 and 3, may be
useful to person 1. This example emphasizes that an expert with more awareness does not need
to have more knowledge and an expert with better knowledge of an event may not have more
awareness, and that someone who reasons about engaging such experts may even know this
even though she is unaware of the awareness and knowledge of those experts. In this example,
person 3 may be called a generalist, as she is aware of many things without necessarily knowing
about them, while person 2 can really be specialist w.r.t. event [q]. Experts may come in two
versions, generalists and specialists.14 �

Example 4 (Person 1 knows that there might exist something that person 2 is
aware of but person 3 is unaware of and vice versa.) So far, our examples involved just
chains of totally ordered state spaces. The power of the lattice of spaces is that we can model
diverse awareness levels including incomparable ones. Consider the unawareness structure of
Figure 4. There are four spaces with Spq � Sp � S and Spq � Sq � S but Sp and Sq are
not comparable. The obvious projections are indicated by faint grey lines between states. The
possibility correspondence of person 1 is solid-lined blue, of person 2 dashed green, and of
person 3 dotted-lined red. Person 1 is unaware both of events [p] and [q] since at all states her
possibility set is on the least expressive space, S. Person 2 is aware of event [p] but unaware of
[q]. Finally, person 3 is aware of event [q] but unaware of event [p].

Figure 4: Unawareness Structure of Example 4

14Schipper (2016) analyzes how social networks how generalists facilitate social network formation among
specialists to create the fabric of “organizational” knowledge and awareness.
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Now, ∃Sx(U1(x)∩A2(x))∩∃Sx(U1(x)∩A3(x))∩¬∃Sx(U1(x)∩A2(x)∩A3(x)) = {(∅,Σ(Spq)}↑ =
Ω. That is, at (∅,Σ(Spq) there might exist an event of which person 1 is unaware of but person
2 is aware of, there might exist also an event of which person 1 is unaware of but person 3 is
aware of but it is not the case that there might exist an event of which person 1 is unaware of
but both persons 2 and 3 are aware of. Moreover, person 1 knows this. In fact, it is common
knowledge, CK(∃Sx(U1(x)∩A2(x))∩∃Sx(U1(x)∩A3(x))∩¬∃Sx(U1(x)∩A2(x)∩A3(x))) = Ω.
�

4 Discussion

I require that at each state ω ∈ Ω, the domain of discourse, D(ω) is equal to the set of all
event Σ(S) for some space S (with S � Sω). So even though the domain of discourse D(ω)
may contain events that are not comprehensible at ω, they are comprehensible at some state
in a more expressive space. Since this holds at every state in the unawareness structure, this is
implicitly common knowledge among all individuals. That is, even though a person may not be
able to make sense of a statement, she implicitly knows that there is an awareness level at which
it becomes meaningful. In this sense, if there exists something that an individual is unaware of,
then it is implicitly common knowledge that whatever it is, it is meaningful at some awareness
level and not just something that is nonsense no matter what.

Quantified unawareness structures differ from unawareness structures in a particular feature
that may be not too obvious at the first glance. In unawareness structures of Heifetz, Meier,
and Schipper (2006, 2008), if one picks a space S in the lattice S and looks at the sublattice
consisting of all spaces S′ � S, S′ ∈ S, then this is just like any other unawareness structure.
This differs from quantified unawareness since the domain of discourse at states in S may contain
also events comprehensible only in some space S′′ � S. It follows that the upmost space S̄ of
S is really special since at any state in this space the domain of discourse must contain exactly
all events expressible in the upmost space of S. This is why the Barcan property of knowledge
holds without qualifications in the upmost space. Moreover, if an individual’s possibility set is
located in this upmost space, then she is aware of everything and knows that for all events she
is aware of them (Proposition 3). If one were to model god (e.g., extending Biblical games of
Brams (2003)), this is were all his possibility sets would be located. Compare this to standard
states spaces where everybody must be god and there is (literally!) no space for us mortals
with limited awareness.

Quantified event structures avoid some subtle difficulties of second-order and first-order
modal logic. For instance, in second-order logic with quantification over formulae it is dif-
ficult to give semantics to ∀xx. It is difficult to determine the truth when x is substituted
by the formula ∀xx, creating a circularity (see Halpern and Rego, 2009, p. 506). That’s
why propositionally quantified modal logic restricts quantifiers to range over non-quantified
formulae only. In the event-based approach, we replace x by events (i.e., subsets of states)
in a pre-specified set of all events (given by the respective domain of discourse). Because
the set of events is pre-specified, there is no circularity problem. I.e., given S, ∀Sxx ={
ω ∈ S : {ω}↑ ∩ S

(⋂
F∈D(ω) F

)
⊆
⋂

F∈D(ω) F
}

= ∅S . It is never the case that all events obtain

simultaneously.

In computer science, often the notion of implicit knowledge is taken as primitive (see Fagin
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and Halpern, 1988) rather than explicit knowledge as in economics. Implicit knowledge is a kind
of pre-awareness knowledge interpreted as knowledge of events an individual would have if he
were aware of the events. The problem with this interpretation is that if indeed the individual
were aware of the events then her state of mind is different and hence also her knowledge may
be different. Since a decision maker can condition her choice on her explicit knowledge but not
her implicit knowledge (unless it is also explicit), the notion of explicit knowledge is testable
with choice experiments (see Schipper, 2013, 2014). That’s why it seems to be the relevant
notion of knowledge for economics. It is possible though to derive implicit knowledge from
explicit knowledge in unawareness structures. For state ω in the upmost space S, consider the
possibility set Πi(ω). This possibility set may be a subset of a space S less expressive than S.

Now consider the inverse image (rSS)−1(Πi(ω)). Do this for every state in ω ∈ S. The collection
of inverse images of the possibility sets in the upmost space is the partition modelling implicit
knowledge.

The path of my further research is clear: First, on the foundational side, I need to canonical
construct quantified unawareness structures from syntax and an appropriate axiom system such
that states are maximal consistent sets of formulae w.r.t. to the axiom system with quantified
awareness analogous to the canonical construction of unawareness structures by Heifetz, Meier,
and Schipper (2008). Second, the precise relationship to Halpern and Rêgo (2012), Board and
Chung (2011), and Sillari (2008) needs to be investigated. Third, I need extend quantified
unawareness structures to quantified unawareness belief structures so as to create type spaces
with quantified unawareness analogous to unawareness belief structures of Heifetz, Meier, and
Schipper (2013). The issue is measurability and the (at most countable infinite) conjunction
property of beliefs that also play a role when considering the universal quantifier. From there
I can develop Bayesian games with awareness of unawareness analogous to Bayesian games
with unawareness à la Meier and Schipper (2014a). This enables game theoretic applications
of awareness of unawareness. Next, dynamic extensions can be considered. Last but not least,
quantified unawareness structures open the door for applications of awareness of unawareness
to economic problems.

A On the Definition of Quantifiers

Note that throughout the text we interpreted events like ∃SxE(x) as “given S there might exists
an event x for which E(x)” rather than “given S there exists an event x for which E(x)”. The
reason is the following characterization whose proof is contained in Appendix B.

Lemma 6 For every S ∈ S and event operator E(x),

∃SxE(x) =

ω ∈ S : {ω}↑ ∩ S

 ⋃
F∈D(ω)

E(F )

 ∩ ⋃
F∈D(ω)

E(F ) 6= ∅


↑

.
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Proof. By definition

∃SxE(x) = ¬∀Sx¬E(x)

=

S \

ω ∈ S : {ω}↑ ∩ S

 ⋂
F∈D(ω)

¬E(F )

 ⊆ ⋂
F∈D(ω)

¬E(F )


↑

=

S \

ω ∈ S : {ω}↑ ∩ S

¬ ⋃
F∈D(ω)

E(F )

 ⊆ ¬ ⋃
F∈D(ω)

E(F )


↑

=

ω ∈ S : {ω}↑ ∩ S

¬ ⋃
F∈D(ω)

E(F )

 * ¬
⋃

F∈D(ω)

E(F )


↑

=

ω ∈ S : {ω}↑ ∩ S

¬ ⋃
F∈D(ω)

E(F )

 ∩ ⋃
F∈D(ω)

E(F ) 6= ∅


↑

=

ω ∈ S : {ω}↑ ∩ S

 ⋃
F∈D(ω)

E(F )

 ∩ ⋃
F∈D(ω)

E(F ) 6= ∅


↑

�

Note that the characterization does not claim that {ω}↑∩S
(⋃

F∈D(ω) E(F )
)
⊆
⋃

F∈D(ω) E(F ).

Thus, this characterization suggests that the existential quantifier should verbally be interpreted
as “given S there might exists an event x for which E(x)”. We believe that this is the appropri-
ate definition especially since we are mainly motivated to express events like “there might exist
an event that I am unaware of”. To make the point, consider the following two alternatives.

First, we could define alternatively

∃̃SxE(x) :=

ω ∈ S : {ω}↑ ∩ S

 ⋃
F∈D(ω)

E(F )

 ⊆ ⋃
F∈D(ω)

E(F )


↑

.

This existential quantifier might be interpreted as “given S, there exists and event x for which
E(x)”. Given this stronger notion of existential quantifier, we can let the universal quantifier
be defined as usual by

∀̃SxE(x) := ¬∃̃Sx¬E(x).

This is now a weaker notion of universal quantifier as we have the following characterization.
The proof is analogous to the proof of Lemma 6.

Lemma 7 For every S ∈ S and event operator E(x),

∀̃SxE(x) =

ω ∈ S : {ω}↑ ∩ S

 ⋂
F∈D(ω)

E(F )

 ∩ ⋂
F∈D(ω)

E(F ) 6= ∅


↑

.

If one were to insist on a verbal interpretation, we would have to say something like “given
S it might be the case that for all events x we have E(x).” We find this notion dissatisfactory
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especially we awareness in mind. We are less interested in events like “it might be the case that
I am unaware of all events”.

Second, because of the problem with the weakening of the universal quantifier, we may
not insist on defining the universal quantifier with the existential quantifier or vice versa. We
could use ∃̃S for the existential quantifier and ∀S (as defined in the main text) as the universal
quantifier. Note that we have the following straight-forward implication:

Lemma 8 For any space S and event operator E(x),

∀SxE(x) ⊆ ¬∃̃Sx¬E(x).

Nevertheless, we belief that the use of ∃̃S is highly dissatisfactory especially when modelling
events like “there exists an event that I am unaware of”. This is easiest explained with an
example and pertains exactly to ∃SxE(x) \ ∃̃SxE(x).

Example 5 Consider the simple unawareness structure of Figure 6. There are two spaces.
In the upper space, Sq, there are two states both of which projecting to the unique state in
the lower space, S. There is one individual whose possibility correspondence is depicted with
the blue circles and arrow. Consider the event [q] = {(q,Σ(Sq))}. It is easy to verify that
Ui([q]) = {(q,Σ(Sq))} and Ai([q]) = {(¬q,Σ(Sq))}. Now verify

∃SxUi(x) = {(∅,Σ(Sq))}↑ = Ω

∃̃SxUi(x) = ∅S

Figure 5: Differences between ∃SxUi(x) and ∃̃SxUi(x)

∃̃SxUi(x) = ∅S suggests that given S it is not the case that there exists an event of which
individual i is unaware of. This is counterintuitive as at (∅,Σ(Sq)) there is an event in the
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domain of discourse Σ(Sq) (namely [q]) for which there is a state, namely (q,Σ(Sq)), at which
the individual i is unaware of [q]. There is also a state, namely (¬q,Σ(Sq)), at which the
individual i is aware of [q]. Both of these states project down to (∅,Σ(Sq)). So at S, the
individual cannot distinguish whether or not there really exists an event of which she is unaware
of it. But requiring in that case to treat this situation as if it is not the case that there exist an
event of which the individual is unaware of seems to be imprudent. Somehow she does register
that there might exist an event of which she is unaware of. Thus, we use ∃S rather than ∃̃S . �

The differences between the quantifiers become immaterial under the following sufficient
conditions:

Lemma 9 Given the space S ∈ S and any event operator E(x) we have

∀SxE(x) = ∀̃SxE(x) and ∃SxE(x) = ∃̃SxE(x)

if either of the following condition hold

(i) if S = S̄ (i.e., the upmost space of the lattice),

(ii) if S is a singleton consisting just of one space,

(iii) if for all S, S′ ∈ S with S′ � S, rS
′

S is a bijection.

The proof is immediate. Note that lattices of bijective spaces played already a role when
showing equal expressiveness of unawareness structures to object-based unawareness structures
of Board and Chung (2011). See Board, Chung, and Schipper (2011).

Finally, we want to prove Remark 1. First, suppose for any S, S′ ∈ S and event oper-
ator E(x) we have ∀S′xE(x) ⊆ ∀SxE(x). Consider Example 5. In this example, we have
∀SqxAi(x) = {(¬q,Σ(Sq))} but ∀SxAi(x) = ∅S , disproving the conjecture.

Now suppose that for any S, S′ ∈ S and event operator E(x) we have ¬∃S′xE(x) ⊆
¬∃SxE(x). Consider Example 5. In this example, we have ∃SqxUi(x) = {(q,Σ(Sq))} and
∃SxUi(x) = Ω. Thus, ∃SqxUi(x) = {(¬q,Σ(Sq))} and ¬∃SxUi(x) = ∅S , again disproving the
conjecture.

Now suppose that for any S, S′ ∈ S and event operator E(x) we have ∃S′xE(x) ⊆ ∃SxE(x).
Consider the following example depicted in Figure 1. This is essentially the same as Example
5 except that the description of the unique state in the lowest space, S, reads (∅,Σ(S). In this
example we have ∃SqxUi(x) = {(q,Σ(Sq))} and ∃SxUi(x) = ∅S , disproving the conjecture.

Finally, suppose that for any S, S′ ∈ S and event operator E(x) we have ¬∀S′xE(x) ⊆
¬∀SxE(x). Again, consider the example in Figure 1. We have ∀SqxAi(x) = {(¬q,Σ(Sq))}
and ∀SxAi(x) = Ω. Thus, ¬∀SqxAi(x) = {(q,Σ(Sq))} and ¬∀SxAi(x) = ∅S , disproving the
conjecture. We conclude that quantified events are unrelated across the spaces of the lattice.
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Figure 6: Counterexample

B Proofs

Proof of Lemma 2

∀Sx(E(x) ∩ F (x))

=

ω ∈ S : {ω}↑ ∩ S

 ⋂
G∈D(ω)

E(G) ∩
⋂

G∈D(ω)

F (G)

 ⊆ ⋂
G∈D(ω)

E(G) ∩
⋂

G∈D(ω)

F (G)


↑

=

ω ∈ S : {ω}↑ ∩ S

 ⋂
G∈D(ω)

E(G) ∩
⋂

G∈D(ω)

F (G)

 ⊆ ⋂
G∈D(ω)

E(G)


↑

∩

ω ∈ S : {ω}↑ ∩ S

 ⋂
G∈D(ω)

E(G) ∩
⋂

G∈D(ω)

F (G)

 ⊆ ⋂
G∈D(ω)

F (G)


↑

=

ω ∈ S : {ω}↑ ∩ S

 ⋂
G∈D(ω)

E(G)

 ⊆ ⋂
G∈D(ω)

E(G)


↑

∩

ω ∈ S : {ω}↑ ∩ S

 ⋂
G∈D(ω)

F (G)

 ⊆ ⋂
G∈D(ω)

F (G)


↑

= ∀SxE(x) ∩ ∀SxF (x)

where the second last equality follows from the fact that
⋂

G∈D(ω) E(G) and
⋂

G∈D(ω) F (G) are
events. �
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Proof of Lemma 3

¬∀SxE(x) =

S \

ω ∈ S : {ω}↑ ∩ S

 ⋂
F∈D(ω)

¬E(F )

 ⊆ ⋂
F∈D(ω)

E(F )


↑

=

ω ∈ S : {ω}↑ ∩ S

 ⋂
F∈D(ω)

¬E(F )

 ∩ ¬ ⋂
F∈D(ω)

E(F ) 6= ∅


↑

=

ω ∈ S : {ω}↑ ∩ S

 ⋂
F∈D(ω)

¬E(F )

 ∩ ⋃
F∈D(ω)

¬E(F ) 6= ∅


↑

Since for any ω ∈ S,
⋂

F∈D(ω) ¬E(F ) ⊆
⋃

F∈D(ω) ¬E(F ) we have by definition of ∀Sx¬E(x)
that ∀Sx¬E(x) ⊆ ¬∀SxE(x). The second implication of Lemma 3 is an equivalent restatement
of the first. �

Proof of Lemma 4

Part (i) follows as an immediate corollary from Lemma 3.

For part (ii), note that

∀SxE(x) =

ω ∈ S : {ω}↑ ∩ S

 ⋂
G∈D(ω)

E(G)

 ⊆ ⋂
G∈D(ω)

E(G)


↑

⊆ {ω ∈ S : ω ∈ E(F )}↑

= (E(F ) ∩ S)↑

⊆ E(F )

where the first subset-relation follows from the fact that S � S′ ∧S(F ) and thus E(F ) ∈ Σ(S).
�

Proof of Proposition 1

∀SxAi(E(x)) =

ω ∈ S : {ω}↑ ∩ S

 ⋂
F∈D(ω)

Ai(E(F ))

 ⊆ ⋂
F∈D(ω)

Ai(E(F ))


↑

=

ω ∈ S : {ω}↑ ∩ S

 ⋂
F∈D(ω)

Ai(E(F ))

 ⊆ Ai

 ⋂
F∈D(ω)

E(F )


↑

,

where last equality follows from A-conjunction (Heifetz, Meier, and Schipper, 2006, Propo-

sition 3). By Heifetz, Meier, and Schipper, 2006, Proposition 1, S
(⋂

F∈D(ω) Ai(E(F ))
)

=

S
(⋂

F∈D(ω) E(F )
)

. It follows now from the definition of the awareness operator that {ω}↑ ∩
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S
(⋂

F∈D(ω) Ai(E(F ))
)
⊆ Ai

(⋂
F∈D(ω) E(F )

)
implies that for all ω′ ∈ {ω}↑∩S

(⋂
F∈D(ω) E(F )

)
we have Πi(ω

′) ⊆ S
(⋂

F∈D(ω) E(F )
)

. Note that S � S
(⋂

F∈D(ω) Ai(E(F ))
)

. By Projec-

tions Preserve Awareness (Heifetz, Meier, and Schipper, 2006, Remark 3), ω ∈ Πi(ω). Thus,
Πi(ω) ⊆ S. Hence ω ∈ Ki(S

↑). By Weak Necessitation (Heifetz, Meier, and Schipper, 2006,
Proposition 3), ω ∈ Ai(∀SxE(x)), since ∀SxE(x) is by definition an S-based event. �

Proof of Proposition 2

∀SxKi(E(x)) =

ω ∈ S : {ω}↑ ∩ S

 ⋂
F∈D(ω)

Ki(E(F ))

 ⊆ ⋂
F∈D(ω)

Ki(E(F ))


↑

=

ω ∈ S : {ω}↑ ∩ S

 ⋂
F∈D(ω)

Ki(E(F ))

 ⊆ Ki

 ⋂
F∈D(ω)

E(F )


↑

,

where last equality follows from Conjunction (Heifetz, Meier, and Schipper, 2006, Proposi-

tion 2). By Heifetz, Meier, and Schipper, 2006, Proposition 1, S
(⋂

F∈D(ω) Ki(E(F ))
)

=

S
(⋂

F∈D(ω) E(F )
)

. It follows now from the definition of the knowledge operator that {ω}↑ ∩

S
(⋂

F∈D(ω) Ki(E(F ))
)
⊆ Ki

(⋂
F∈D(ω) E(F )

)
implies that for all ω′ ∈ {ω}↑∩S

(⋂
F∈D(ω) E(F )

)
we have Πi(ω

′) ⊆
⋂

F∈D(ω) E(F ). Note that S � S
(⋂

F∈D(ω) Ki(E(F ))
)

. By Projections Pre-

serve Knowledge, (Πi(ω
′))S = Πi(ω). Note that by assumption for all ω′′ ∈ Πi(ω), D(ω′′) =

D(ω′). Thus, (rS
∗

S )−1(Πi(ω
′′)) = Πi(ω

′) with S∗ = S
(⋂

F∈D(ω) Ki(E(F ))
)

. Since {ω′′}↑ ∩S∗ ⊆
(rS

∗
S )−1(Πi(ω

′′)), we have ω′′ ∈ ∀SxKi(E(x)). Thus, ω ∈ Ki∀SxKi(E(x)). From Corollary 1
(Truth) follows ω ∈ Ki(∀SxE(x)). Hence, ∀SxKi(E(x)) ⊆ Ki(∀SxE(x)). �

Proof of Corollary 4

Ui∃SxE(x) = Ui∀SxE(x) = ¬Ai∀SxE(x) ⊆ ¬∀SxAi(E(x)) = ∃SxUi(E(x)). The middle equal-
ity follows from Propositions 1. The first equality follows from weak necessitation (Heifetz,
Meier, and Schipper, 2006, Proposition 3). �

Proof of Remark 2

Suppose that the converse to the Barcan formula for awareness hold, i.e., for any i ∈ I, S ∈ S,
and event operator E(x), we have Ai∀SxE(x) ⊆ ∀SxAi(E(x)). This is equivalent to

¬∀SxAi(E(x)) ⊆ ¬Ai∀SxE(x)

¬∀SxAi(E(x)) ⊆ Ui∀SxE(x)

∃SxUi(E(x)) ⊆ Ui∀SxE(x)

∃SxUi(E(x)) ⊆ Ui∃SxE(x)
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Consider as a Example 5. There we have ∃SxUiUi(x) = ∃SxUi(x) = Ω (where the first
equality follow from AU-introspection but Ui∃SxUi(x) = Ui(S

↑) = ∅S , where the first equality
follows from weak necessitation (Heifetz, Meier, and Schipper, 2006, Proposition 3). Thus,
Example 5 is a counterexample to the converse of the Barcan formula for awareness. �

Proof of Remark 3

Note that by weak necessitation (Heifetz, Meier, and Schipper, 2006, Proposition 3), Ai∃SxE(x) =
Ai(S

↑).

By the same arguments as in the proof of 1. of Proposition 3, we have ∃SxAi(E(x)) = S↑.

Consider Example 5. In this example, ∃SqxAi(x) = Sq ⊃ Ai(Sq). Thus, it is a counterex-
ample. �

Proof of Proposition 3

1. By the properties of the discourse correspondence, for all ω ∈ Ω, D(ω) 3 Ω. By necessitation
(Heifetz, Meier, and Schipper, 2006, Proposition 2), Ki(Ω) = Ω. Thus, Ai(Ω) = Ω and hence
Ui(Ω) = ∅S . Thus, ∀SxUi(x) = ∅S . Since Σ(S) ⊆ Σ(S) for any S ∈ S, we have Σ(S) 3 Ω.
Thus, for any S ∈ S, ∀SxUi(x) = ∅S .

2. FA holds trivially because for all S ∈ S, ∅S = ∀SxUi(x) = Ki(∀SxUi(x)) = ∅S .

4. For any S ∈ S, ∃SxUi(x) is an S-based event. Thus, by Weak Necessitation (Heifetz,
Meier, and Schipper, 2006, Proposition 3), Ai(∃SxUi(x)) = Ai(S

↑).

3. This follows now from 4. and Necessitation (Heifetz, Meier, and Schipper, 2006, Propo-
sition 2).

5. Note that by properties of the discourse correspondence, D(ω) = Σ(S) for all ω ∈ S.
Thus, ∀SxAi(x) = Ai(S) by Weak Necessitation (Heifetz, Meier, and Schipper, 2006, Propo-
sition 3). Again, by Weak Necessitation, Ai(S) = Ki(S). Thus, Ki(∀SxAi(x)) = KiKi(S) =
Ki(S) by truth (Heifetz, Meier, and Schipper, Proposition 2). �
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