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Abstract

We seek an evolutionary explanation for why in some situations humans maintain ei-
ther optimistic or pessimistic attitudes towards uncertainty and are ignorant to relevant
aspects of their environment. Players in strategic games face Knightian uncertainty about
opponents’ actions and maximize individually their Choquet expected utility with respect
to neo-additive capacities (Chateauneuf, Eichberger, and Grant, 2007) allowing for both
an optimistic or pessimistic attitude towards uncertainty as well as ignorance to strategic
dependencies. An optimist (resp. pessimist) overweighs good (resp. bad) outcomes. A
complete ignorant never reacts to opponents’ changes of actions. We focus on sub- and
supermodular aggregative games and provide monotone comparative statics w.r.t. opti-
mism/pessimism. With qualifications we show that in finite populations optimistic (resp.
pessimistic) complete ignorance is evolutionary stable and yields a strategic advantage in
submodular (resp. supermodular) games with aggregate externalities. Moreover, this evo-
lutionary stable preference leads to Walrasian behavior in these classes of games.
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1 Introduction

The motivation for this work is twofold: First, we seek an evolutionary foundation for why
humans maintain in some situations an optimistic or pessimistic attitude towards uncertainty
and are ignorant to strategic aspects. Second, at a more theoretical level, we want to study
how we can restrict by evolutionary arguments degrees of freedom in models with Knightian
uncertainty, ambiguity, or imprecise beliefs. In particular, we want to endogeneize a player’s
attitude towards Knightian uncertainty as well as the amount of Knightian uncertainty over
opponents’ actions in strategic games by asking which of those parameters would maximize
material payoffs (or fitness) and thus prosper and thrive.

In the literature on social psychology, there is evidence for both optimistic and pessimistic
attitudes in the face of uncertainty and their relation to “success”. For example, Seligman
and Schulman (1986) found that more optimistic health insurance agents sold more policies
during the first year of employment and were less likely to quit. Cooper, Dunkelberg, and Woo
(1988), using interviews, found that self-assessed chances of new entrepreneurs’ success are
uncorrelated with education, prior experience, and start-up capital, and are overly optimistic.
Taylor and Brown (1988) found that mentally healthy individuals maintain some unrealistic
optimism whereas depressed individuals have more accurate perceptions. Studies on individual
decision making show that the majority of subjects shy away from uncertain prospects like in
the Ellsberg’s paradox (for a survey see for example Camerer and Weber, 1992). To summarize,
there is evidence on optimism in psychology and evidence on pessimism in the literature on
individual decision making. This may suggest that both types of belief biases are present in
the majority of the population and are not stable across situations. An individual may hold
optimistic beliefs in some situations but pessimistic beliefs in some other situations. In this
article we seek an evolutionary explanation and show that these biases may depend on the
strategic situation.

We model Knightian uncertainty, ambiguity or imprecise beliefs by Choquet expected util-
ity theory (CEU) with non-extreme-outcome-additive (neo-additive) capacities introduced by
Chateauneuf, Eichberger, and Grant (2007). Knightian uncertainty or ambiguity refers to situa-
tions where probabilities may be unknown or imperfectly known as opposed to situations under
risk where probabilities are known, a distinction made by Knight (1921). CEU with respect to
neo-additive capacities by Chateauneuf, Eichberger, and Grant (2007) includes as special cases
Subjective expected utility (SEU) as well as various preferences for decision making under com-
plete ignorance such as Minimax (Wald, 1951), Maximax, and Hurwicz preferences (Hurwicz,
1951, Arrow and Hurwicz, 1972). More importantly, because of its parameterized form, it lends
itself well to applications.

Since CEU with neo-additive capacities by Chateauneuf, Eichberger, and Grant (2007) is
a generalization of conventional Subjective expected utility theory (SEU), it has more degrees
of freedom like the degrees of ignorance and the degrees of optimism and pessimism defined in
the next section. It is natural to ask how to select among the degrees of optimism/pessimism
and ignorance. A possible answer could be provided in an indirect evolutionary framework: If
evolution (including social learning processes and market selection) chooses preferences param-
eterized by those degrees of freedom, which one would it choose? To study such questions, we
make use of the literature on Choquet expected utility in strategic games, in which players face
Knigthian uncertainty about opponents’ actions (see for instance Dow and Werlang, 1994, Eich-
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berger and Kelsey, 2000, 2002, 2014, Marinacci, 2000, Eichberger, Kelsey, and Schipper, 2009).1

While it is intuitive that players face Knightian uncertainty in an unfamiliar one-shot situation,
we show that even after a very large number of repeated interactions implicitly assumed to be
behind evolution, players may be still have biased beliefs and be completely ignorant.

We focus on submodular games and supermodular games (see Topkis, 1998) both with
aggregation and positive or negative externalities. These classes include many games prominent
in economics and social sciences in general. Many games in economics involve ordered action
sets like prices, quantities, qualities, contribution levels, appropriation levels etc. Often there
is a natural aggregate of all players actions like total market quantity, total contribution or
appropriation etc.2 Moreover, many games with ordered action space have either some version
of strategic substitutes or strategic complements (Bulow, Geanakoplos and Klemperer, 1985)
or can be brought into a framework of supermodular or submodular games.3 We show that
sub- and supermodularity is preserved when extending these games to Choquet expected utility
with neo-additive capacities. Moreover, Choquet expected utility with neo-additive capacities
features distinct parameters such as the degree of ignorance and degree of optimism. As we
will show using results from Topkis (1998), these parameters lend themselves well to monotone
comparative statics.

The monotone comparative statics of equilibrium under Knightian uncertainty with respect
to the degree optimism/pessimism is just a first stepping stone in studying the restriction of
parameters of CEU with neo-additive capacities by evolutionary arguments. It allows us to
learn about changes in behavior when mutants with different preference parameters enter the
population of players. We use the indirect evolutionary approach (Güth and Yaari, 1992, Güth,
1995, Heifetz, Shannon, and Spiegel, 2007a, b; see Alger and Weibull, 2019, for a recent survey).
In this literature, players drawn randomly from a large population are matched to play a game
and behave rationally with respect to their preferences but their survival is judged by their
material payoff. In our contexts, preferences are given by CEU w.r.t. neo-additive capacities
while material payoffs are payoffs in games. Instead of working with a large population, we
employ Schaffer’s (1988, 1989) notion of evolutionary stability for finite populations because we
believe that in many situations of economic relevance, players “play the field”, i.e., all players
in a finite set of players play a game. A strategy is finite population evolutionary stable if it
maximizes relative (material) payoffs among all players. The technical motivation is that finite
population evolutionary strategies are relatively easy to work with in sub- and supermodular
aggregative games (Schipper, 2003, Alós-Ferrer and Ania, 2005). With this apparatus, we can
then ask which parameter configurations of CEU with neo-additive capacities yield actions
in equilibrium under Knightian uncertainty that maximize relative material payoffs. These

1There is a growing literature on ambiguity in strategic games. Beside the aforementioned papers, it includes
Klibanoff (1996), Lo (1996, 1999), Epstein (1997), Groes et al. (1998), Haller (2000), Ryan (2002), Bade (2011),
Jungbauer and Ritzberger (2011), Riedel and Sass (2014), Battigalli et al. (2015, 2016), Dominiak and Schipper
(2019) etc.

2For games with aggregation see Schipper (2003), Alós-Ferrer and Ania (2005), Cornes and Hartley (2005),
Jensen (2005), and Acemoglu and Jensen (2013).

3Examples include Cournot oligopoly (Amir, 1996, Vives, 2000), some Bertrand oligopoly (Vives, 2000),
common pool resource dilemma (Walker, Gardner, and Ostrom, 1990), some rent seeking games (Hehenkamp,
Leininger and Possajennikov, 2004), some bargaining games, some public goods games, some co-ordination games
(e.g. Cooper, 1999), arms race and search problems (Milgrom and Roberts, 1990).
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parameter configurations are the finite population evolutionary stable preferences.

To build an intuition for our results, consider for example a version of a Nash bargaining
game. Let there be two players who simultaneously demand a share of a fixed pie. If the
demands sum up to less than 100% of the pie, then the pie is shared according to the demands.
Otherwise, players receive nothing. This game has strategic substitutes because the marginal
benefit from a player’s larger demand is decreasing in the demand of the opponent. Let each
player face Knightian uncertainty about the opponents’ demand. Suppose that a player is a
pessimist. Then she overweighs large demands by the opponent. The more pessimistic the
belief, the lower is the best response demand because the player fears the incompatibility of
demands, which would result in a zero payoff. Could such a pessimistic belief be evolutionary
stable? Suppose the opponent (the “mutant”) is not as pessimistic, then his best response is a
larger demand. If demands add up to less than 100%, this opponent is strictly better off than
the pessimist, otherwise both get nothing and he is not worse off. Thus pessimism can not
be evolutionary stable in this two-player game. Is optimism evolutionary stable? Suppose the
opponent is an extreme optimist in the sense that he believes that the opponent will demand
zero, then the best response is to demand 100%. If the opponent does indeed demand zero,
the extreme optimist is strictly better off. Otherwise, if the opponent does demand some strict
positive share, then both receive nothing and the extreme optimist is not worse off. Thus there
is no preference with an attitude towards Knightian uncertainty that would successfully invade
a set of extremely optimistic players because an optimist can not be made worse off relative to
other player.

The example of the Nash bargaining game is also an example for the evolutionary stability
of complete ignorance. A completely ignorant player behaves as if she is alone and there is no
opponent. We will show that evolutionary stability of (to some degree) optimistic preferences
with complete ignorance holds with qualifications not only for the Nash bargaining game but
for an entire class of games characterized by a general notion of strategic substitutes, submod-
ular aggregative games. Similarly, we show that preferences reflecting extreme pessimism and
complete ignorance are finite population evolutionary stable in games with some general notion
of strategic complements, supermodular aggregative games.

The evolutionary stability of ignorance is somewhat disappointing given that we put in
considerable effort in modelling games with a rich class of preferences. At a second glance it
is not surprising though. Ignorance yields commitment power. As the example of the Nash
demand game illustrates, there are important classes of games where commitment to an aggres-
sive action maximizes relative material payoffs. We should point out though that we present
just sufficient conditions. Moreover, we demonstrate with examples that complete ignorance is
not necessary for finite population evolutionary stability. Yet, in order to really take advantage
of the rich class of CEU preferences in strategic settings and go beyond complete ignorance,
we believe it will be necessary to go beyond the important classes of games that we consider.
The evolutionary stability of optimism versus pessimism depends on the classes of games we
study. In submodular aggregative, a bolder aggressive action maximizes relative material pay-
offs and hence optimism becomes evolutionary stable. This insight goes back essentially to von
Stackelberg (1934). In contrast, in our class of supermodular aggregative games, a timid ac-
tion maximizes relative material payoffs and hence pessimism is evolutionary stable, an insight
that becomes immediately intuitive when considering for instance minimum effort coordination
games. In both classes of games, the evolutionary stable preference leads to Walrasian behavior
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meaning that players behave as if they maximize material payoffs taking the aggregate of all
players actions as given.

How to interpret this evolutionary approach? While we trust that the formal results will
become clear in the following sections, it is less immediate how to understand the notion of
evolution. In an economic context, evolution may not necessarily be understood in a bio-
logical sense. Rather we may be primarily concerned with the question as to what extent a
trait (here either optimism or pessimism and ignorance) is relatively more successful than (or
yields a strategic advantage over) other traits (i.e., other attitudes towards uncertainty). These
successful traits may then be spread through social imitation (Vega-Redondo, 1997, Schipper,
2009, Duersch, Oechssler, and Schipper, 2012). Beyond “social learning”, there is some empir-
ical evidence on a positive correlation between economic success and reproductive success from
both today’s developing countries (Hull and Hull, 1977, Mace, 1996, Mulder, 1987) and some
European countries prior to the industrial revolution (Boone, 1986, Hughes, 1986). So even a
biological interpretation of our notion of evolution may not be too far-fetched after all.

While we are not aware of any prior results seeking to restrict parameters of Choquet
expected utility by evolutionary arguments in games, the associate editor kindly made us aware
that Eichberger and Guerdjikova (2018) study the evolution of optimism and pessimism in a
financial market using a case-based α-MEU model and show that pessimists may dominate
the market in the long-run. Our results on the monotone comparative are closely related
to Eichberger, Kelsey, and Schipper (2009) and Eichberger and Kelsey (2014). We extend
earlier work by Eichberger, Kelsey, and Schipper (2009) who study Choquet expected utility
with neo-additive capacities in particular examples such as Cournot duopoly, Bertrand duopoly,
strategic delegation, a “peace-making” game, and some two-player concave games with strategic
complementarities. Eichberger and Kelsey (2014) model optimism and pessimism in games with
Choquet expected utility featuring JP-capacities (Jaffray and Philippe, 1997), which are more
general than neo-additive capacities. They also make use of Topkis’ (1998) results on monotone
comparative statics in supermodular games but restrict to finite one-dimensional action sets.
They do not consider submodular games though.

The article has two main sections: The next section provides a comprehensive step-by-step
exposition of the theory of sub- and supermodular aggregative games with Choquet expected
utility with neo-additive capacities including monotone comparative statics. Section 3 focuses
on evolutionary stable preferences. We conclude with a discussion in Section 4. Proofs are
relegated to the appendix.

2 Super- and Submodular Aggregative Games with Ambiguity

In this section, we present the theory of super- and submodular aggregative games with negative
or positive externalities under Choquet expected utility w.r.t. neo-additive capacities. This
is the class of games for which we study finite-population evolutionary stable preferences in
Section 3.
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2.1 Preliminaries

We first introduce some order-theoretic notions with which we define our class of games. A
partially ordered set 〈X,D〉 is a set X with a binary relation D that is reflexive, antisymmetric,
and transitive. The dual of a set X with a partial order D is the same set X with a partial
order D′ such that for x′, x′′ ∈ X, x′ D′ x′′ if and only if x′′ D x′. A chain is a partially ordered
set that does not contain an incomparable pair of elements, i.e., a totally or completely ordered
set. A lattice 〈X,D〉 is a partially ordered set in which each pair of elements x, y ∈ X has a
least upper bound (join) denoted by x ∨ y = supX{x, y} and a greatest lower bound (meet)
denoted by x ∧ y = infX{x, y} contained in this set. A lattice 〈X,D〉 is complete if for every
nonempty Y ⊆ X, supX Y and infX Y exist in X. A sublattice Y of a lattice X is a subset
Y ⊆ X for which each pair of elements in Y the join and meet is contained in Y . A sublattice Y
of a lattice X is subcomplete if for each nonempty subset Y ′ ⊆ Y , supX(Y ′) and infX(Y ′) exist
and are contained in Y . The interval-topology on a lattice X is the topology for which each
closed set is either X, ∅, or of type {y ∈ X|x D y, y D z}. A lattice is complete if and only if it
is compact in its interval-topology (see Topkis, 1998, pp. 29). We assume that all lattices are
endowed with a topology finer than the interval-topology, and that all products of topological
spaces are endowed with the product topology.4 For a lattice 〈X,D〉 with A,B ⊆ X, B is
higher than A if a ∈ A, b ∈ B implies that a∨ b ∈ B and a∧ b ∈ A (strong set order). We abuse
notation and write B D A. A function (correspondence) f from a partially ordered set X to a
partially ordered set Y is increasing (decreasing) if x′′ D x′ in X implies f(x′′) D (E)f(x′). It
is strictly increasing (decreasing) if we replace “D (E)” with its non-reflexive part “B(C)” in
the previous sentence.

Definition 1 (Supermodular/Submodular) A real valued function f : X −→ R on a lat-
tice X is supermodular in x on X if for all x, y ∈ X,

f(x) + f(y) ≤ f(x ∨ y) + f(x ∧ y). (1)

A real valued function on a lattice is submodular if −f is supermodular. A function that is both
supermodular and submodular is called a valuation.

Definition 2 (Increasing / Decreasing Differences) A real valued function f on a par-
tially ordered set X × T has increasing (decreasing) differences in (x, t) on X × T if for all
x′′ B x′ and t′′ B t′,

f(x′′, t′)− f(x′, t′) ≤ (≥)f(x′′, t′′)− f(x′, t′′). (2)

If inequality (2) holds strictly, then f has strictly increasing (decreasing) differences.

As a special case, functions defined on a finite product of chains that have increasing differ-
ences on this product are also supermodular on this product (Topkis, 1998, Corollary 2.6.1.).
A familiar characterization of increasing differences in many economic problems is as follows:
If f : Rn −→ R is twice-continuously differentiable, then f has (strictly) increasing differences

on Rn if and only if ∂2f(x)
∂xi∂xj

≥ (>)0 for all i 6= j and x. An analogous result holds for (strictly)

decreasing differences.

4This is important later for existence of equilibrium under Knightian uncertainty.
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The importance of the properties stem from the interpretation of f as a payoff function.
For example, decreasing differences of payoffs in a player’s own action and some aggregate of
all players’ actions is read as: Consider a symmetric n-player game. Let player 1 take a larger
action than player 2. Then the difference between their payoffs is decreasing in the aggregate
of all players’ actions. This will be become clear in the next subsections.

2.2 Strategic Games with Ordered Actions

Let N be the finite set of players i = 1, ..., n. Each player’s set of actions is a sublattice Ai
of a lattice X. We write A = ×i∈NAi, with a typical element being a ∈ A. Player i’s payoff
function is πi : A −→ R. We denote by A−i = ×j∈N\{i}Aj . A typical element of A−i is a−i.
G = 〈N, (Ai), (πi)〉 denotes a strategic game (with lattice action space). A Nash equilibrium in
pure actions of the strategic game G is an action profile a∗ ∈ A such that for all i ∈ N ,

πi(a
∗
i , a
∗
−i) ≥ πi(ai, a∗−i), for all ai ∈ Ai. (3)

Let E(G) ⊆ A denote the set of pure Nash equilibria of the game G.

A strategic game G is (strictly) supermodular if for each player i ∈ N the payoff function
πi is supermodular in ai on Ai for each a−i ∈ A−i and has (strictly) increasing differences
in (ai, a−i) on A. A strategic game G is (strictly) submodular if for each player i ∈ N the
payoff function πi is (strictly) supermodular in ai on Ai for each a−i ∈ A−i and has (strictly)
decreasing differences in (ai, a−i) on A.

A strategic game G has positive (negative, resp.) externalities if for each player i ∈ N the
payoff πi(ai, a−i) is increasing (decreasing, resp.) in a−i on A−i for each ai ∈ Ai. A strategic
game G has strictly positive (negative, resp.) externalities if the strict versions hold.

Externalities have implications for the best and worst actions by opponents. The proof of
the following observations is contained in the appendix.

Lemma 1 Assume that for each player i ∈ N , the set of actions Ai is a subcomplete sub-
lattice of a complete lattice X and that πi is continuous in a−i on Ai for every ai ∈ Ai. If
G has positive externalities, then supA−i

A−i ⊆ arg maxa−i∈A−i πi(ai, a−i) and infA−i A−i ⊆
arg mina−i∈A−i πi(ai, a−i) for all ai ∈ Ai. If G has negative externalities, then infA−i A−i ⊆
arg maxa−i∈A−i πi(ai, a−i) and supA−i

A−i ⊆ arg mina−i∈A−i πi(ai, a−i) for all ai ∈ Ai.

At this point, it may be useful to illustrate the concepts introduced so far with an example.
The following example is not meant to appreciate the generality of our approach. Rather, it
should help to reader to recognize the notions introduced so far in a simple familiar example.

Example 1 (Cournot duopoly with linear demand and convex cost) Consider two play-
ers, i = 1, 2, and symmetric payoff functions π(ai, a3−i) = (100−ai−a3−i)ai− 1

2a
2
i with actions ai

being in a suitable positive real-valued interval. This is a standard Cournot duopoly with linear
demand and quadratic cost. Since each player i’s set of actions is a real-valued interval, πi is triv-

ially supermodular in ai for every a3−i. It has strictly decreasing differences, ∂
2πi(ai,a3−i)
∂ai∂a3−i

= −1.

It has negative externalities, i.e., ∂πi(ai,a3−i)
∂a3−i

= −ai since ai ≥ 0. If ai ∈ A = [a, a] with a > 0

for i = 1, 2, then a ∈ arg mina3−i∈A πi(ai, a3−i) and a ∈ arg maxa3−i∈A πi(ai, a3−i) for all ai,
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illustrating Lemma 1.

For some of the results, we restrict attention to games in which players consider an aggregate
of opponents’ actions.

Definition 3 (Aggregative Game) A strategic game G with ordered action space is aggrega-
tive if there exists an aggregator ℵ : X ×X −→ X such that

(i) Idempotence: ℵ1(ai) := ai for all ai ∈ Ai ⊆ X and all i ∈ N ;

(ii) Induction: ℵk(a1, ..., ak) = ℵ(ℵk−1(a1, ..., ak−1), ak), for k = 2, ..., n;

(iii) Symmetry: ℵk is symmetric for k = 1, ..., n, i.e., ℵk(a1, ..., ak) = ℵk(af(1), ..., af(k)) for all
bijections f : {1, ..., k} −→ {1, ..., k}, for k = 1, ..., n;

(iv) Order-preservation: ℵk is order-preserving for k = 1, ..., n, i.e., (a1, ..., ak) E (a′1, ..., a
′
k)

implies ℵk(a1, ..., ak)E ℵk(a′1, ..., a′k), for k = 1, ..., n;

and the payoff function πi is defined on Ai ×X for all players i ∈ N .

As mentioned in the introduction, many games with ordered action sets in the literature have
some aggregation property. A special example of an aggregative game would be the Cournot
oligopoly where quantities are usually summed up to the market quantity. Definition 3 is
similar to Alós-Ferrer and Ania (2005). Some versions of aggregative games are also considered
by Corchón (1994), Dubey, Haimanko, and Zapechelnyuk (2006), Schipper (2003), Cornes and
Hartley (2005), Jensen (2005), and Acemoglu and Jensen (2013).

Definition 4 (Aggregate Taking Strategy) The action profile a◦ = (a◦1, ..., a
◦
n) with a◦i ∈

Ai is an optimal aggregate taking outcome of an aggregate strategic game G = 〈N, (Ai), (πi)〉 if
for all i ∈ N ,

πi(a
◦
i ,ℵn(a◦)) ≥ πi(ai,ℵn(a◦)), for all ai ∈ Ai (4)

It is strict aggregate taking outcome if the inequality holds strictly. We call a◦i player i’s aggre-
gate taking strategy.

This notion is due to Possanjenikov (2002). Note that an ATS generalizes naturally the com-
petitive outcome or the Walrasian outcome in oligopoly games (see also Vega-Redondo, 1997,
Schipper, 2003, Alós-Ferrer and Ania, 2005). Alós-Ferrer and Ania (2005) provide an existence
result for games satisfying the single-crossing property based on Topkis (1998), Milgrom and
Shannon (1994), and Tarski’s fixed-point theorem.

We say that an aggregative game G is (strictly) supermodular if it is supermodular and for
each player i ∈ N the payoff function πi has (strictly) increasing differences in (ai,ℵn(a)) on
Ai ×X. An aggregative game G is (strictly) submodular if it is (strictly) submodular and for
each player i ∈ N the payoff function πi has (strictly) decreasing differences in (ai,ℵn(a)) on
Ai ×X.
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We say that an aggregative game G has positive (resp. negative) aggregate externalities if
it has positive (resp. negative) externalities and for each player i ∈ N the payoff πi(ai,ℵn(a))
is increasing (resp. decreasing) in ℵn(a) for each ai ∈ Ai. An aggregative game G has strict
positive (resp. negative) aggregate externalities if the strict versions hold.

Lemma 2 Let G = 〈N, (Ai), (πi)〉 be an aggregative strategic game with Ai being a chain for
each i ∈ N , and let a◦ be a symmetric ATS profile and a∗ be a symmetric Nash equilibrium of
G. If the aggregative game G is such that πi satisfies

(i) the decreasing difference in (ai,ℵn(a)) on Ai×X and G has strict negative (resp. positive)
aggregate externalities, or

(ii) the strict decreasing differences in (ai,ℵn(a)) on Ai×X and G has negative (resp. positive)
aggregate externalities,

then a◦ D a∗ (resp. a◦ E a∗).

In the appendix we prove this result more generally for games satisfying the single crossing
property (Milgrom and Shannon, 1994).

Example 1 (Continued) Consider again the Cournot duopoly of Example 1. This is an
aggregative game with the sum of quantities, ℵ1(a1) = a1 and ℵ2(a1, a2) = a1 + a2, as the
natural aggregator. We can write the payoff function as πi(ai,ℵ2(a1, a2)) = (100 − ℵ2(a1 +
a2))ai − 1

2a
2
i . This aggregative game is submodular. It has negative aggregate externalities

(since the demand function is downward sloping in aggregate quantity). The unique symmetric
ATS is the competitive outcome where price equals marginal cost, a◦i = 100

3 for i = 1, 2. The
unique symmetric Nash equilibrium is a∗i = 25 and thus smaller than the unique symmetric
ATS, thus illustrating Lemma 2.

2.3 Optimism, Pessimism, and Complete Ignorance

In this section, we model Knightian uncertainty by Choquet expected utility theory with neo-
additive capacities, which will be applied to games in the next section. Let Ω be a space of
mutually exclusive states and Σ be a corresponding sigma-algebra of events.

Definition 5 (Neo-additive capacity) The ambiguous belief of decision maker i is repre-
sented by a neo-additive capacity ν : Σ −→ R+ is defined by νi(E) = αiδi + (1 − δi)µi(E), for
all E ∈ Σ s.t. ∅ $ E $ Ω, νi(∅) = 0, νi(Ω) = 1, µi a probability measure on (Ω,Σ), and
αi, δi ∈ [0, 1].

Chatenauneuf, Eichberger, and Grant (2007) axiomatize Choquet expected utility with
neo-additive capacities. When a player’s belief is represented by a neo-additive capacity, her
Choquet expected utility from an action ai ∈ Ai takes the following form.

Definition 6 (Choquet expected utility with neo-additive capacity) Let πi : Ai×Ω −→
R be player i’s payoff function with ♥i(ai) := maxω∈Ω πi(ai, ω) and zi(ai) := minω∈Ω πi(ai, ω).
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Player i’s Choquet expected utility from an action ai with respect to her neo-additive capacity
νi is given by

ui(ai, νi) = δi[αi♥i(ai) + (1− αi)zi(ai)] + (1− δi)Eµi [πi(ai, ω)], (5)

with Eµi [πi(ai, ω)] being the expected payoff with respect to the probability measure µi on (Ω,Σ).

Choquet expected utility with respect to neo-additive capacities is just a special case of
Choquet expected utility (Schmeidler, 1989). What makes it useful for our purpose is that
the parametrization of neo-additive capacities suggests a differentiation between the amount of
ambiguity δi faced by decision maker i and her attitude towards this ambiguity αi. We call the
parameter δi the degree of ignorance whereas αi is the degree of optimism.

Definition 7 (Optimism, Pessimism and (Complete) Ignorance) Assume that player i
is a Choquet expected utility maximizer with a neo-additive capacity. We interpret α′i ≥ αi as
α′i being more optimistic than αi (or αi being more pessimistic than α′i) for a given δi. We
interpret δ′i ≥ δi as δ′i being more ignorant than δi for a given αi. We say that i is completely
ignorant if δi = 1. We say that i is a realist if δi = 0.5

Intuitively, a neo-additive capacity describes a situation in which the decision maker i has
an additive probability measure µi over outcomes but also lacks confidence in this belief. She
reacts to this ambiguity with overweighing good or bad outcomes. A decision maker is optimistic
(resp. pessimistic) if she overweighs good (resp. bad) outcomes. The latter interpretation is
based on Wakker (2001) and justified in our context by Chatenauneuf, Eichberger, and Grant
(2007).

CEU with neo-additive capacities entails several familiar decision-theoretic approaches as
special cases. Cases 1 to 3 concern decision making under complete ignorance.

1. If δi = 1 and αi = 0, then the preference has the Minimax form and is extremely
pessimistic (Wald, 1951);

2. if δi = 1 and αi = 1, then the preference has the Maximax form and exhibits a maximal
degree of optimism;

3. if δi = 1 and αi ∈ [0, 1], then these preferences coincide with the Hurwicz criterion, (see
Hurwicz, 1951, and Arrow and Hurwicz, 1972);

4. if δi = 0 and αi ∈ [0, 1], the belief coincides with a conventional probability measure. In
particular, the capacity is additive, i.e., A,B ⊆ Ω, A∩B = ∅, νi(A∪B) = νi(A) + νi(B).
This is the case of Subjective expected utility (SEU).

2.4 Strategic Games with Optimism and Pessimism

A neo-additive capacity νi is defined by αi, δi, and the additive probability measure µi. Since
players in games face strategic uncertainty about opponents’ actions, µi represents a prob-
abilistic conjecture over opponents’ actions. This probability measure is to be determined

5Note that if δi = 0, then the parameter αi ∈ [0, 1] can be arbitrary.
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endogenously in equilibrium. In contrast, αi and δi will be treated exogenously for a game.
Since in games the payoff function πi is fixed, we simply refer to (αi, δi) as the preference of
player i.

To connect Choquet expected utility to games, we let each player’s state-space be the
opponents’ set of action profiles. I.e., player i’s state-space is Ωi = ×j 6=iAj . We focus here
on equilibria in pure strategies only. Hence a player’s probability measure over opponents’
actions is degenerate as it assigns unit probability to exactly one profile of opponents’ actions.
Therefore we write for player i’s Choquet expected payoff from an action ai given i’s belief

ui(ai, a−i, αi, δi) = δi[αi♥i(ai) + (1− αi)zi(ai)] + (1− δi)πi(ai, a−i).

For this Choquet expected payoff to be well-defined, we need to require that both ♥(ai) and
z(ai) exist for every ai ∈ Ai.

Assumption 1 For each player i ∈ N , Ai is a subcomplete sublattice of a complete lattice X
and πi is continuous in a−i on A−i for every ai ∈ Ai.

Remark 1 Assumption 1 implies that ui(ai, a−i, αi, δi) is well-defined for every ai ∈ Ai, a−i ∈
A−i, αi, δi ∈ [0, 1]2.

Assumption 1 implies that the best and worst payoffs exist, and thus function ui is well
defined. The proof is identical to the first part of the proof of Lemma 1 in the appendix. Since
this is assumption is very basic, we impose this assumption from now on without explicitly
mentioning it any further.

Denote by α = (α1, ..., αn) the profile of degrees of optimism and by δ = (δ1, ..., δn) the
profile of degrees of ignorance. Let G(α, δ) = 〈N, (Ai), (ui(αi, δi))〉 be a “perturbed” strategic
game derived from G by replacing πi with ui(αi, δi) for all i ∈ N . Note that G(α,0) = G for
all α ∈ [0, 1]n.

Definition 8 (Equilibrium under Knightian Uncertainty) For a strategic game G, an
Equilibrium under Knightian uncertainty (EKU) a∗(α, δ) ∈ A with degrees of ignorance δ =
(δ1, ..., δn) and degrees of optimism α = (α1, ..., αn) is a pure Nash equilibrium of the game
G(α, δ). I.e., for all i ∈ N ,

ui(a
∗
i (α, δ), a∗−i(α, δ), αi, δi) ≥ ui(ai(α, δ), a∗−i(α, δ), αi, δi), for all ai ∈ Ai. (6)

Equilibrium under Knigthian uncertainty, as here defined, is just pure Nash equilibrium
of the strategic game defined with Choquet expected utility function featuring neo-additive
capacities. It implies equilibrium under ambiguity of Eichberger, Kelsey, and Schipper (2009);
see their Proposition 1. It also implies equilibrium in beliefs under ambiguity of Eichberger and
Kelsey (2014), who allow for optimism and pessimism as well by using Choquet expected utility
with more general JP-capacities (Jaffray and Philippe, 1997). When restricted to neo-additive
capacities, their support notion of capacities coincides with the support of the probability
measure of neo-additive capacities (Eichberger and Kelsey, 2014, Proposition 3).

(Strict) Supermodularity or submodularity of G is preserved under “perturbations” with
Knightian uncertainty as modelled by Choquet expected utility with neo-additive capacities.
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Lemma 3 If G is (strictly, resp.) supermodular, then G(α, δ) is (strictly, resp.) supermod-
ular for any (α, δ) ∈ [0, 1]n × [0, 1]n. The analogous result holds for G being (strictly, resp.)
submodular.

The proof is contained in the appendix.

Often the literature makes use of a weaker ordinal notion of strategic complementarity. The
ordinal version of supermodularity, quasisupermodularity (see Milgrom and Shannon, 1994),
may not need to be preserved under Knightian uncertainty since the sum of two quasisuper-
modular functions does not need to be quasisupermodular unless either is supermodular (Topkis,
1998, pp. 62). An analogous conclusion holds for functions satisfying the ordinal version of
increasing (resp. decreasing) differences, the (resp. dual) single crossing property (see Milgrom
and Shannon, 1994).

Given the game G(α, δ), let player i’s best response correspondence be defined by

bi(a−i, αi, δi) := {ai ∈ Ai : ui(ai, a−i, αi, δi) ≥ ui(a′i, a−i, αi, δi), for all a′i ∈ Ai}. (7)

Lemma 4 If G is supermodular (resp. submodular), then for any i ∈ N and any (αi, δi) ∈
[0, 1]2, the best response bi(a−i, αi, δi) is a sublattice of Ai and increasing (resp. decreasing) in
a−i on {a−i ∈ A−i : bi(a−i, αi, δi) 6= ∅}.

The proof is contained in the appendix.

If the Hurwicz criterion is satisfied, i.e., the player is completely ignorant, then her objective
function does not depend on the opponents’ actions. This leads to the following observation:

Remark 2 If δi = 1, then bi(a−i, αi, 1) is trivially constant in a−i on A−i for any αi ∈ [0, 1].

Example 1 (Continued) Consider again Example 1. Let A = [0, 50]. We have ♥(ai) =
π(ai, 0) and z(ai) = π(ai, 50). Thus, assuming CEU given player i’s degree of optimism αi and
degree of ignorance δi, player i’s Choquet expected utility from quantity ai when opponent 3− i
selects quantity a3−i is u(ai, a3−i, αi, δi) = δi[αiπ(ai, 0) + (1−αi)π(ai, 50)] + (1− δi)π(ai, a3−i).

Player i’s best response to a3−i is given by b(a3−i, αi, δi) = 100+50αiδi−δi(50−a3−i)−a3−i

3 . If δi = 1,
then player i’s best response is constant in a3−i. Given (α1, α2, δ1, δ2), the EKU is given by

a∗i (α1, α2, δ1, δ2) = 200+50α3−iδ3−iδi−50α3−iδ3−i−50δ3−iδi+150αiδi+50δ3−i−50δi
8−δ3−iδi+δ3−i+δi

. Clearly, EKU coin-
cides with Nash equilibrium if there is no ignorance, i.e., δ1 = δ2 = 0.

We are able to state general results on the existence of equilibrium under Knightian uncer-
tainty. The proof (in the appendix) of the following proposition relies on a generalization of
Tarski’s fixed-point theorem by Zhou (1994).

Proposition 1 (Existence in Supermodular Games) If G is supermodular and for all i ∈
N , Ai is a non-empty complete lattice, and πi is upper semicontinuous on Ai for every a−i ∈ A−i
and continuous on A−i for every ai ∈ Ai, then for any (α, δ) ∈ [0, 1]n×[0, 1]n the set of equilibria
under Knightian uncertainty is a complete lattice and a greatest and least equilibrium exist.
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Since there is no general fixed-point theorem applicable to decreasing best responses, we use
for the next result a different approach to existence for submodular games based on Kukushkin
(1994) and Novshek (1985).

Proposition 2 (Existence in Submodular Games) If G is submodular and for all i ∈ N ,
Ai is a non-empty compact subset of R+, πi is defined on Ai and the range of sums of opponents
actions, and is continuous in both variables, then for any (α, δ) ∈ [0, 1]n × [0, 1]n the set of
equilibria under Knightian uncertainty is non-empty.

The proof is contained in the appendix. Kukushkin (1994) requires for each player a real-
valued compact action set, an upper hemi-continuous best response correspondence with a
single-valued selection that is decreasing in the additive aggregate of opponents’ actions. The
last assumption is slightly weaker than decreasing best responses in the additive aggregate of
opponents’ actions that result from decreasing differences of the Choquet expected payoffs in
(ai, a−i) on A in our case. The pseudo-potential approach to existence by Dubey, Haimanko
and Zapechelnyuk (2006) would be an alternative to Kukushkin (1994). This approach could
be used for games both with increasing and decreasing best responses. Our existence theorem
may be generalized to action sets that are compact subsets of a partially ordered topological
vector-space and more general continuous aggregators of opponents’ actions using results by
Jensen (2005).

In the later analysis, complete ignorance plays a prominent role. For this special case, no
matter whether the game is supermodular or submodular, existence and uniqueness is rather
straight-forward (see the appendix for brief proofs).

Proposition 3 (Existence under Complete Ignorance) Let G = 〈N, (Ai), (πi)〉 be a strate-
gic game with for all i ∈ N , Ai being a non-empty complete lattice, πi being upper semincontin-
uous and supermodular on Ai for every a−i ∈ A−i and continuous on A−i for every ai ∈ Ai, and
the Hurwicz criterion satisfied (i.e., δi = 1 for all i ∈ N). Then for all α ∈ [0, 1]n, the set of
equilibria under Knightian uncertainty is a complete lattice and a greatest and least equilibrium
exist.

Proposition 4 (Uniqueness under Complete Ignorance) Let G = 〈N, (Ai), (πi)〉 be a
strategic game with for all i ∈ N , Ai ⊆ Rmi for some positive natural number mi, πi being
strictly concave on Ai, and the Hurwicz criterion being satisfied (i.e., δi = 1). If there exists
an equilibrium under Knightian uncertainty for α ∈ [0, 1]n, then it is unique and each player’s
equilibrium action is her strictly dominant action.

2.5 Monotone Comparative Statics

To analyze the effect of mutants with respect to the degrees of optimism and ignorance, αi and
δi, respectively, in equilibrium under Knightian uncertainty, it will be helpful to study first the
monotone comparative statics of equilibrium under Knightian uncertainty with respect to these
parameters. Given the level of generality, these results may be of interest in their own right.
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Proposition 5 If πi is supermodular in ai on Ai, has increasing differences in (ai, a−i) on A
and has positive (resp. negative) externalities, then bi(a−i, αi, δi) is increasing (resp. decreas-
ing) in αi on {αi ∈ [0, 1] : bi(a−i, αi, δi) 6= ∅} for each δi ∈ [0, 1]. The same comparative statics
obtains if πi has decreasing differences in (ai, a−i) on A and negative (resp. positive) exter-
nalities. If πi has strictly increasing differences in (ai, a−i) on A and positive (resp. negative)
externalities, α′′i > α′i in [0, 1], given δi ∈ [0, 1], and for any a−i ∈ A−i, a

′
i ∈ bi(a−i, α

′
i, δi)

and a′′i ∈ bi(a−i, α′′i , δi), then a′i E (D)a′′i . In this case, if one picks any ai(αi) in bi(a−i, αi, δi)
for each αi with bi(a−i, αi, δi) nonempty, then ai(αi) is increasing (resp. decreasing) in αi on
{αi ∈ [0, 1] : bi(a−i, αi) 6= ∅}. The same comparative statics obtains if πi has strictly decreasing
differences in (ai, a−i) on A and negative (resp. positive) externalities.

The proof in the appendix proceeds in two steps. First, we show that increasing differences
in own and opponents’ actions and negative externalities are sufficient for increasing differences
of Choquet expected utility with respect to own actions and the degree of optimism (and
analogous for the dual notions). The intuition is as follows: Increasing differences in own and
opponents’ actions means that the marginal benefit from an increase of my action is increasing
in opponents’ actions. With positive externalities, the best outcome of player i is reached with
the largest actions of opponents. Thus, increasing optimism is like putting more weight on the
largest actions of opponents, which increases the marginal benefit of the player’s own action. In
a second step we observe the usual monotone comparative statics (Topkis, 1998), namely that
when a supermodular function has increasing differences in an action and a parameter, then
the argmax correspondence (of the perturbed game) is increasing in the parameter (for where
it is nonempty). Proposition 5 follows now as a corollary.

Together with general results of Topkis (1998, Theorem 4.2.2) on supermodular games,
the previous observations on the monotone comparative statics of best responses in the per-
turbed game with respect to the degree optimism imply immediately monotone comparative
statics of equilibrium under Knigthian uncertainty with respect to the degree of optimism in
supermodular games.

Proposition 6 (Mon. Comp. Statics - Supermodularity) If G is a supermodular game
with positive (resp. negative) externalities, then the greatest and the least equilibrium under
Knightian uncertainty are increasing (resp. decreasing) in optimism and decreasing (resp. in-
creasing) in pessimism.

As usual in the literature, there is no dual result on the monotone comparative statics for
submodular games. However, if the Hurwicz criterion is satisfied (i.e., under complete igno-
rance), then we can derive a dual but more special result for submodular games with external-
ities. It makes use of the fact that under complete ignorance the best response correspondence
is constant in opponents’ actions.

Proposition 7 (Mon. Comp. Statics - Submodularity and Complete Ignorance) If
G is a submodular game with negative (resp. positive) externalities and the Hurwicz criterion
(δi = 1) is satisfied for all players i ∈ N , then the greatest and the least equilibrium under
Knightian uncertainty are increasing (resp. decreasing) in optimism and decreasing (resp. in-
creasing) in pessimism.

13



The proof is contained in the appendix.

Example 1 (Continued) The last observation can be illustrated with Example 1. As-
sume complete ignorance of both players, δ1 = δ2 = 1. For simplicity, assume further that
α1 = α2 ≡ α. The corresponding EKU is given by a∗i (α, 1) = 50(1+α)

3 for i = 1, 2. Clearly, this
is increasing in α ∈ [0, 1].

We emphasize that although complete ignorance implies that best responses are constant in
opponents’ actions (Remark 2), it does not mute the monotone comparative statics w.r.t. the
degree of optimism. The degree of optimism affects which constant action is a best response
no matter whether we focus on sub- or supermodular aggregative games. In the former class,
it even facilitates the monotone comparative statics w.r.t. the degree of optimism because for
submodular games such results would be elusive without complete ignorance.

3 Evolutionary Stable Neo-additive CEU-Preferences

In this section, we restrict the analysis to symmetric games. This is natural in an evolutionary
context where relative payoffs are relevant. Because of symmetry, we write for all i ∈ N ,
Ai = A and πi(a) = π(ai|a−i). Note that symmetry implies ♥i = ♥ and zi = z. Furthermore,
we assume that each player’s set of actions A is a chain. This is because we do not know
how to assess the equilibrium payoff of a mutant playing an action that is incomparable to a
non-mutant’s action.

3.1 Notion of Evolutionary Stability

Denote by TG an arbitrary collection of any player’s preferences that can possibly be defined in
a game form 〈N,A〉 of the strategic game G = 〈N,A, π〉. For instance, we could parameterize
player i’s Choquet expected utility functions over outcomes in the game G with respect to
neo-additive capacities by ti = (αi, δi) ∈ TG = [0, 1]2 (for a fixed payoff function π). Yet we
can allow here for an even more general set of preferences like preferences over other players’
payoffs, beliefs etc. The only requirement we impose is that TG includes Choquet expected
utility functions over outcomes of the strategic game G with respect to neo-additive capacities
and the fixed payoff function π as discussed in Section 2.4.

Let us denote a profile of all players’ preferences by t ∈ TG. Let G(t) be the strategic
game played when t is the profile of players’ preferences in the game form 〈N,A〉. Further,
let E(G(t)) be the set of pure strategy equilibria given the game G(t). Since we allow the
collection of preferences to be arbitrary, equilibrium is not well-defined. The only requirement
we impose is that all Choquet expected utility players with neo-additive capacities play their
best response to opponents’ equilibrium actions.6 This implies that if all players are Choquet
expected utility maximizers with neo-additive capacities, then an equilibrium is defined by

6There is no reason to assume that with an arbitrary collection of preferences there is a meaningful notion
of equilibrium. However, we show below, that complete ignorance is evolutionary stable. For such players the
equilibrium notion considered here makes sense. Such players ignore other players and just play their individually
preferred action no matter what others do.
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equilibrium under Knightian uncertainty (Definition 8). It also implies that if all players are
expected utility maximizers, then an equilibrium is defined by Nash equilibrium of the game
with material payoffs.

We restrict the set of abstract equilibria further by focusing on intra-group symmetric equi-
libria defined by

Esym(G(t)) := {a(t) ∈ E(G(t)) : ti = tj implies ai(t) = aj(t)}.

This is the set of equilibria in which players with the same preference play also the same action.
Since for an abstract set of preferences, existence of such equilibria can not be guarantied, we
assume Esym(G(t)) 6= ∅ for all t ∈ TG. Since we did not specify what players would play in
equilibrium except for players with Choquet expected utility preferences with respect to neo-
additive capacities, nonemptyness is not a strong assumption. When all players are Choquet
expected utility players with respect to neo-additive capacities, our existence results apply (for
the class of games that we consider here). An alternative interpretation of our setting is that we
restrict TG to Choquet expected utility with respect to neo-additive capacities only for which
our existence results guarantee nonemptyness of Esym(G(t)).

As standard in the literature on the evolution of preferences, each player i chooses according
to her ex-ante objective function indexed by ti. For instance, if i is a Choquet expected utility
maximizer, then she chooses according to her Choquet expected utility function. However, the
player’s fitness is evaluated by her material payoff π. This conforms for instance to fitness
considerations in business or academia. Ultimately the success of a manager (resp. assistant
professor) is assessed by her realized profit (resp. publications) and not by what the manager
(resp. assistant professor) originally expected.

In many economic situations such as in markets with imperfect competition, the provision of
public goods etc., a finite number of players interact repeatedly in some strategic context. For
such environments, Schaffer (1988, 1989) introduced a notion of evolutionary stable strategy.
It is an extension of the standard evolutionary stable strategy for large populations to finite
populations, in which each player plays against all other players (“playing-the-field”). An action
a ∈ A is a finite population evolutionary stable strategy (fESS) of a symmetric strategic game
G = 〈N,A, π〉 if

π(a | a′, a, ..., a) ≥ π(a′ | a, ..., a) for all a′ ∈ A.

We apply Schaffer’s notion of finite population ESS to the evolution of preferences in aggregative
games. As convention we denote by j the mutant and by i 6= j a non-mutant. For any preference

t ∈ TG and mutant j, we denote t−j = (

n−1︷ ︸︸ ︷
t, ..., t).

Definition 9 (fESP) t ∈ TG is a Finite Population Evolutionary Stable Preference (fESP) in
a symmetric aggregative game G = 〈N,A, π〉 if for all mutant prefences t′ ∈ TG,

π(a∗i (t
′
j , t−j),ℵn(a∗(t′j , t−j))) ≥ π(a∗j (t

′
j , t−j),ℵn(a∗(t′j , t−j))), (8)

for some a∗(t′j , t−j) ∈ Esym(G(t′j , t−j)).

A finite population evolutionary stable preference t ∈ TG is robust (RfESP) in a symmetric
aggregative game G if for all mutant preferences t′ ∈ TG inequality (8) holds for all a∗(t′j , t−j) ∈
Esym(G(t′j , t−j)).
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A finite population evolutionary stable preference t ∈ TG is globally stable (GfESP) in a
symmetric aggregative game G if for all mutant preferences t′ ∈ TG,

π(a∗i (

m︷ ︸︸ ︷
t′, ..., t′, t, ..., t),ℵn(a∗(

m︷ ︸︸ ︷
t′, ..., t′, t, ..., t))) ≥ π(a∗j (

m︷ ︸︸ ︷
t′, ..., t′, t, ..., t),ℵn(a∗(

m︷ ︸︸ ︷
t′, ..., t′, t, ..., t))), (9)

for some a∗(

m︷ ︸︸ ︷
t′, ..., t′, t, ..., t) ∈ Esym(G(

m︷ ︸︸ ︷
t′, ..., t′, t, ..., t)) for all m ∈ {1, ..., n− 1}.

A finite population evolutionary stable preference t ∈ TG is robust globally stable in a
symmetric aggregative game G if for all mutant preference t′ ∈ TG inequality (9) holds for all

a∗(

m︷ ︸︸ ︷
t′, ..., t′, t, ..., t) ∈ Esym(G(

m︷ ︸︸ ︷
t′, ..., t′, t, ..., t)) for all m ∈ {1, ..., n− 1}.

In words, a preference is evolutionary stable if there is an equilibrium in which the player
with such a preference is more successful than any mutant. A preference is robust evolutionary
stable if the player with such a preference is more successful than any mutant in any equilibrium.
Finally, a preference is globally evolutionary stable if for any number of mutants there is an
equilibrium in which a player with such a preference is more successful than any mutant.

We say that complete ignorance is a finite population evolutionary stable preference in G if
the Choquet expected utility function t = u(α, δ) with δ = 1 is a finite population evolutionary
stable preference in G. That is, the finite population evolutionary stable preference satisfies
the Hurwicz criterion and hence involves complete ignorance. Analogous definitions apply to
complete ignorance being a (robust) globally stable preference.

We say that a preference with pessimism and complete ignorance is finite population evo-
lutionary stable in G if the Choquet expected utility function t = u(α, δ) with δ = 1 and α ≤
min{α′ ∈ [0, 1] : a(α′, (1, ..., 1)) ∈ Esym(G(α′, (1, ..., 1)) ∩ Esym(G)} is a finite population evolu-
tionary stable preference in G. We say that a preference with optimism and complete ignorance
is finite population evolutionary stable in G if the Choquet expected utility function t = u(α, δ)
with δ = 1 and α ≥ max{α′ ∈ [0, 1] : a(α′, (1, ..., 1)) ∈ Esym(G(α′, (1, ..., 1)) ∩ Esym(G)} is a
finite population evolutionary stable preference in G. (Robust) globally stable preferences with
optimism (resp. pessimism) and complete ignorance are defined analogously. These definitions
capture the intuition that a preference leading to Nash equilibrium can not be behaviorally dis-
tinguished from a realist in equilibrium, i.e., we use symmetric Nash equilibria as the “realism”
benchmarks. We call a preference with complete ignorance optimistic if it involves a higher
degree of optimism than any symmetric preference profile with complete ignorance that would
lead to a symmetric Nash equilibrium. Note that Esym(G(α′, (1, ..., 1)) ∩ Esym(G) is nonempty
if there is a symmetric Nash equilibrium a ∈ Esym(G) for which there exist a symmetric equilib-
rium under Knightian uncertainty a(α, δ) of G with δ = 1 for all players such that a = a(α, δ).
Otherwise, if there is no such “realism” benchmark given by plain Nash equilibrium that could
be also reached with complete ignorance, then the “optimism” (resp. pessimism) property of
complete ignorance preferences might be trivially satisfied. However, Example 1 below shows
that this property is meaningfully satisfied in for instance a standard Cournot oligopoly.

We say that the preference with extreme optimism (resp. pessimism) and complete ignorance
is finite population evolutionary stable in G if t = (α, δ) with α = 1 (resp. α = 0) and δ = 1 is
an evolutionary stable preference in G (likewise for robust global evolutionary stability).
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3.2 Submodular Games, Ignorance, and Optimism

Assumption 2 For any symmetric optimal Aggregative Taking Strategy (ATS) profile a ∈ A of
the game G let there exist a symmetric equilibrium under Knightian uncertainty (EKU) a(α, δ)
of G with complete ignorance, δi = 1, for all i ∈ N such that a = a(α, δ).

The assumption says that for any symmetric optimal aggregate taking strategy, there should
exist a capacity that satisfies the Hurwicz criterion such that every player maximizing individ-
ually her Choquet expected payoffs with respect to this capacity leads to an equilibrium under
Knightian uncertainty that equals to the optimal aggregate taking strategy.

The Hurwicz expectation is a weighted average of the best and worst expectations, which
when coupled with the assumption of aggregate externalities corresponds to the anticipation
of the largest and lowest aggregate of actions. The assumption says that the ATS action can
be reached by maximizing a weighted average of the best and worst expectations. That is, to
reach an optimal outcome in which the player does not perceive any influence on the aggregate
it is sufficient to maximize a suitably weighted average of the best and worst expectations.
The assumption is violated if for example there exists a pure action that dominates any other
action, and the aggregate taking strategy is different from the Nash equilibrium. Then clearly
for any aggregate of opponents’ actions, the dominant action would be the best response to any
opponents’ actions. This is then also the Nash equilibrium action as well as the equilibrium
action in any equilibrium under Knightian uncertainty since Knightian uncertainty respects
dominance. If the dominant Nash equilibrium action is different from any ATS, then there can
not exist a best response equivalent to an ATS. Examples 1 to 3 below satisfy Assumption 2.
Example 4 illustrates what happens if the assumption is violated.

Proposition 8 Let G = 〈N,A, π〉 be a symmetric strict submodular aggregative game with ag-
gregate externalities and TG be a collection of preferences that includes all Hurwicz preferences.
Suppose that Assumption 2 holds and that a symmetric optimal aggregate taking strategy (ATS)
exists. Then we conclude the following:

(i) There exists a preference with optimism and complete ignorance (a Hurwicz preference)
that is globally evolutionary stable in G.

(ii) The symmetric equilibrium under Knightian uncertainty resulting from play with this glob-
ally evolutionary stable preference profile equals to a symmetric ATS profile.

(iii) If π is strictly concave in the player’s own action ai ∈ A for all a−i ∈ A−i, then this
preference with optimism and complete ignorance is also a robust globally evolutionary
stable preference.

The proof is contained in the appendix.

The intuition of the result is as follows: Under the conditions of Proposition 8, we can find
a sufficiently high degree of optimism of such players with complete ignorance and this degree
of optimism play exactly the ATS strategy. The ATS strategy is fESS in this class of games. To
see this note that in this class of games the ATS strategy is larger than the Nash equilibrium
strategy (Lemma 2). If players play Nash equilibrium, then one player playing a somewhat
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larger action decreases her material payoff but decreases the material payoffs of other players
even more. This means that playing somewhat larger than Nash equilibrium is relative payoff
improving (although not absolute payoff improving). The ATS is exactly the outcome with no
relative payoff improving deviations from it signifying the fact that it is fESS. But this implies
that the CEU preferences with ignorance that generate this ATS action are fESP.

In Proposition 8, complete ignorance (and thus the Hurwicz criterion) together with a cer-
tain degree of optimism is a sufficient condition for finite population evolutionary stability of a
preference. This poses the question whether complete ignorance is also necessary. In Example
1 we present a standard Cournot duopoly with linear demand and convex cost where complete
ignorance and extreme optimism is the unique preference with an equilibrium under Knightian
uncertainty that equals the ATS profile and hence implies GfESS. However, in Example 2 we
show in a Cournot duopoly with multiplicative aggregation that complete ignorance and thus
the Hurwicz criterion is not necessary for finite population evolutionary stability of a prefer-
ence. Note that complete ignorance allows us to use arguments of Proposition 7, i.e., a result on
the monotone comparative statics of equilibrium under Knightian uncertainty for submodular
games with externalities. Otherwise, without complete ignorance, changes in equilibrium under
Knightian uncertainty may be ambiguous. This suggests that a full characterization of all finite
population evolutionary stable degrees of ignorance and optimism may be elusive within this
general approach.

Example 1 (Continued) In this game, the only degree of ignorance and optimism for which
the EKU equals the ATS profile is complete ignorance and extreme optimism, i.e., δi = 1 and
αi = 1. Any lower degree of ignorance would require a larger degree of optimism in order to
reach ATS, which is impossible. Since for the class of games under consideration, an ATS im-
plies fESS (Schipper, 2003, Alós-Ferrer and Ania, 2005), and an EKU corresponding to an ATS
involves complete ignorance, we can conclude that extreme optimism and complete ignorance
is a GfESP.

Example 2 (Cournot duopoly with multiplicative aggregate) This example is to show
that complete ignorance is not necessary in Proposition 8. Consider two players, i = 1, 2, and
symmetric payoff functions π(ai, a3−i) = (100− aia3−i)ai− 1

2a
2
i with actions ai being in a suit-

able positive real-valued interval. This is a Cournot duopoly with a multiplicative aggregate
of actions. It has decreasing differences and negative aggregate externalities. There exists an
unique Nash equilibrium and an ATS. One can compute that δi = 1 and αi = 0.95244 leads to
a unique EKU that equals the ATS. Thus Assumption 1 holds. Since it involves complete igno-
rance, this is sufficient to conclude that (δi, αi) is an GfESP. Are there other combinations of
δi and αi that are fESP? It can be verified that indeed there are finite population evolutionary
stable preferences without complete ignorance, for instance δi = 1

2 and αi = 1. Hence complete
ignorance is not a necessary condition in Proposition 8.

Although Example 2 shows that complete ignorance is not necessary, Example 1 demon-
strates that the class of games where complete ignorance is uniquely evolutionary stable is not
negligible. The reason is that Example 1 is not non-generic. The arguments of Example 1 apply
even if we slightly perturb the intercept of the inverse demand function.
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3.3 Supermodular Games, Ignorance, and Pessimism

Supermodular games have often multiple equilibria. The following assumption guarantees that
there are at least two equilibria in pure strategies if maxA 6= minA, i.e., if the set of actions is
non-trivial. In particular, the largest and the smallest profile of actions are Nash equilibria.

Assumption 3 Let for all i ∈ N , πi(ai, inf A−i) be decreasing in ai ∈ A and πi(ai, supA−i) be
increasing in ai ∈ A.7

Note that by Milgrom and Roberts (1990, Theorem 5), for any supermodular game there
exist both a largest and smallest profile of actions that survive iterated deletion of strictly
dominated strategies, and those combinations of actions are pure Nash equilibria. It is known
that only iteratively undominated actions are rationalizable. Assumption 3 can be interpreted
as focusing on the subset of actions that can not be eliminated by iterated elimination of strictly
dominated actions. It is immediate that if an action is strictly dominated, then it can not be
an equilibrium action under Knightian uncertainty for any degree of optimism and ignorance.
However, the assumption is not without loss of generality because the set of rationalizable
actions with Choquet expected utility preferences is a weak superset of rationalizable actions
with expected utility preferences (Dominiak and Schipper, 2019). In Example 4 we illustrate
what may happen if Assumption 3 is violated.

Proposition 9 Let G = 〈N,A, π〉 be a symmetric strict supermodular aggregative game with
aggregate externalities and TG a collection of preferences that includes the Minimax preference.
Suppose that Assumptions 2 and 3 hold. Then we conclude the following:

(i) The preference with extreme pessimism and complete ignorance (the Minimax preference)
is finite population evolutionary stable in G.

(ii) A symmetric equilibrium under Knightian uncertainty (EKU) resulting from play with
this finite population evolutionary stable preference profile equals to a symmetric optimal
aggregate taking strategy (ATS).

(iii) If π is strictly quasi-concave in the player’s own action ai ∈ A for all a−i ∈ A−i, then
this preference with extreme pessimism and complete ignorance (the Minimax preference)
is a robust finite population evolutionary stable preference.

The proof is contained in the appendix.

The intuition for the result is as follows: Under the assumptions of Proposition 9, the
game has boundary Nash equilibria. Note that these equilibria can be ranked for each player.
Depending on the type of externalities, the worse one of those boundary Nash equilibria implies
fESS. Moreover, in this class of games, fESS implies ATS. This ATS is also played with Minimax
preferences. With Minimax preferences, the player considers the worst action of the opponent.

7The proof of Proposition 9 uses only the assumption that if G has positive (resp. negative) externalities,
then πi(ai, inf A−i) is decreasing in ai ∈ A (resp. πi(ai, supA−i) is increasing in ai ∈ A). This is slightly weaker
than Assumption 3.
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Contrary to Proposition 8, we can not show global stability for supermodular games. If such
a result were to hold, it would be sufficient to show it in games with positive (resp. negative)
externalities for which the smallest (resp. largest) combination of actions is a Nash equilibrium
(see Lemma 8 in the appendix). Yet, in such games it is not necessarily the case that the Nash
equilibrium is robust against deviations by any proper subcoalitions of players.

In order to show that complete ignorance and extreme pessimism is a robust finite population
evolutionary stable preference, we require that π is just strictly quasiconcave in the player’s
own action ai instead of being strictly concave as in Proposition 8. This is due to extreme
pessimism and complete ignorance, such that the Choquet expected payoff is equivalent to the
worst-case payoff only. Contrary, in Proposition 8 the Choquet expected payoff is a weighted
average of the worst and the best-case payoff. It is well known that a weighted average of two
quasiconcave functions does not need to be quasiconcave.

The following example demonstrates that complete ignorance is not necessary for a finite
population evolutionary stable preference in the class of games considered by Proposition 9.

Example 3 (Public goods game with multiple Nash equilibria) Consider two play-
ers, i = 1, 2, and symmetric payoff functions π(ai, ai−3) = 1

4(ai + a3−i)
2 − 1

2ai with actions
ai ∈ [0, 1]. This game resembles a public goods game with increasing returns to contribution.
Clearly this game has increasing differences and positive aggregate externalities. Since the ben-
efit function 1

4(a1 +a2)2 is convex in contributions, the only symmetric combinations of actions
corresponding to a pure Nash equilibrium are (0, 0) and (1, 1). Thus Assumption 3 holds. It
can be verified that ai = 0 for i = 1, 2 is the unique fESS. By the arguments in the proof of
Proposition 9, it is an ATS (see also Alós-Ferrer and Ania, 2005). The corresponding ATS
profile equals to an EKU with complete ignorance and extreme pessimism. Since this equi-
librium involves complete ignorance, a non-mutant can not be made worse off by any mutant
because ai = 0 is an fESS and she does not react to a mutant. However, there is a whole
range of parameters (δi, αi) for which the best response is ai = 0 no matter which action a

mutant may choose. These parameters are characterized by αi ∈
[
0, 1

2

]
and δi ∈

[
1

2(1−αi)
, 1
]
.

Hence complete ignorance is not necessary for a finite population evolutionary stable preference.

The next example demonstrates what happens if Assumptions 2 and 3 do not hold. It also
demonstrates that a fESP may not exist within the class of CEU preferences. In particular,
if the game is supermodular and has a unique equilibrium, then there may not exist a finite
population evolutionary stable CEU preference.

Example 4 (Public goods game with a dominant action) Consider two players, i = 1, 2,
and symmetric payoff functions π(ai, a3−i) = (ai + a3−i)

2 − εai with actions ai ∈ [ε, 1] and
0 < ε < 1. This game is a variant of the previous example. However, it possesses a unique
strict dominant action ai = 1. Note that Knightian uncertainty respects this dominance,
i.e., if an action is strictly dominated, then it is never an equilibrium action under Knightian
uncertainty. Thus any symmetric equilibrium under Knightian uncertainty must be (1, 1) no
matter which degree of optimism and degree of ignorance. However, (1, 1) is not fESS since an
opponent can make a player relatively worse off than herself by deviating to action ε. Hence,
there is no finite population evolutionary stable preference within the class of CEU preferences.
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It is straightforward to establish that ai = ε is the unique fESS, and thus by arguments in the
proof of Proposition 9, ε is an ATS (see also Alós-Ferrer and Ania, 2005). This example violates
Assumption 2 since there exists no profile of preferences within the class of CEU such that the
EKU resulting from this preference equals to the ATS profile. It also violates Assumption 3
since πi(ai, inf A−i) is strictly increasing in ai ∈ A and not decreasing. From a more general
point of view, the example also demonstrates that there is no apparent connection between
the unique and strict dominant Nash equilibrium and fESS (as well as no apparent connection
between efficiency and fESS).

4 Concluding Discussion

We show that with some qualifications, optimistic complete ignorance is evolutionary stable in
finite aggregative submodular games and pessimistic complete ignorance is evolutionary stable
in finite aggregative supermodular games. Complete ignorance lets players ignore competitors
and confers commitment power. The optimistic or pessimistic attitude translates into more
aggressive or timid behavior, respectively. Our observations suggest that ambiguity attitudes
and the degree of ambiguity may be context specific rather than constant features across all
situations a decision maker may face. Our observations also suggest that it is possible to select
by evolutionary arguments particular ambiguity attitudes and degrees of ambiguity although
such selection is context specific. On the downside, the selection of parameters by evolutionary
arguments relies heavily on the clear comparative statics w.r.t. ambiguity attitudes afforded
by the particular classes of games and the particular parametric version of Choquet expected
utility that we consider in this paper. It is far from clear how to generalize the results.

We conclude with a number of comments:

a. Evolutionary Stable Preferences and Evolutionary Drift: It is immediate that given
the abstract set of preferences, the inequalities defining (robust globally) evolutionary stable
preferences may not hold strictly. There may be many other preferences that achieve the same
fitness. Hence, our notion of (robust globally) evolutionary stable preference does not preclude
evolutionary drift among preferences achieving the same fitness. In this sense, our notion
of finite population evolutionary stable preferences is a much closer analogy to the notion
of neutrally stable strategies than to the standard notion of evolutionary stable strategies.
However, any preference taking over the population by evolutionary drift would be behaviorally
indistinguishable from the behavior of a homogenous population with the finite population
evolutionary stable preference singled out in our results because otherwise it could be invaded
by the preferences singled out in our results. To prevent evolutionary drift, further assumptions
on the collection of preferences would be required.

Our notion of finite population evolutionary stability is based on the assumption that each
member of the relevant population interacts with each other member (“playing-the-field”). In
environments with a large population, in which a subset of players is randomly matched to play
a game, our conclusions may not obtain if the standard notion of evolutionary stable strategies
is applied.

b. Strategic Advantage - An Interpretation as Contest: Instead on focusing on the evolu-
tionary interpretation of the results, the present study may be interpreted as analyzing contests
or tournaments among players in which one player may have a different preference than others.
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A player with a finite population evolutionary stable preference maximizes relative payoffs, i.e.,
t is a fESP of the game G = 〈N,A, π〉 if and only if (recall that we denote by j the mutant and
by i a non-mutant)

t ∈ arg max
t′j∈T
{π(a∗j (t

′
j , t−j),ℵn(a∗(t′j , t−j)))− π(a∗i (t

′
j , t−j),ℵn(a∗(t′j , t−j)))}.

A fESP maximizes relative payoffs, a player adopting a fESP may decrease her own material
payoffs in equilibrium but decreases material equilibrium payoffs of others even more.

Consider now two preferences t and t′. Partition the set of playersN into two setsNt andNt′ .
All players in Nt have preference t and analogously for Nt′ . Preference t yields a strategic advan-
tage over preference t′ if at each equilibrium a∗ ∈ A of the game G = 〈N,A, (ti)i∈Nt , (t

′
j)j∈Nt′ 〉

we have
πi(a

∗) ≥ πj(a∗) for all (i, j) ∈ Nt ×Nt′

with strict inequality for some (i, j) ∈ Nt × Nt′ (see Koçkesen, Ok, and Sethi, 2000a, b). In
our case, a preference yielding a strategic advantage is a strict robust |Nt′ | evolutionary stable
preference (that would exclude evolutionary drift as discussed above). Suppose we restrict TG
suitably in a non-trivial way such to exclude the possibility of evolutionary drift. E.g., let TG
consist just of expected utility preferences with Bernoulli utility π and the Choquet expected
utility with neo-additive capacity as singled out in our results. Then our result on symmetric
aggregative submodular games with aggregate externalities implies that optimism and complete
ignorance yields a strategic advantage over other preferences in the set TG. Similarly, if Nt′ is
a singleton, then our result on symmetric aggregative supermodular games with aggregate ex-
ternalities implies that extreme pessimism and complete ignorance yields a strategic advantage
over other preferences in the set TG.

c. Behavioral indistinguishability of Choquet expected utility and relative payoff maximiza-
tion: It is well-known from Schaffer (1988, 1989) that finite population evolutionary stable
strategy captures the notion of relative payoff maximization. Thus, another way of interpreting
our results is that they show that in some important classes of games, Choquet expected utility
with respect to some particular neo-additive capacities is behaviorally indistinguishable from
relative payoff maximization. For instance, in aggregate submodular games with negative ag-
gregative externalities (e.g., Example 1), players can be made suitably aggressive by increasing
the degree of optimism in Choquet expected utility with respect to neo-additive capacities.
Such aggression is required for relative payoff maximization. As it is well-known from a number
of results in the literature (Vega-Redondo, 1997, Schipper, 2003, Alós-Ferrer and Ania, 2005,
Schipper, 2009, Duersch, Oechssler, and Schipper, 2012) that such aggression may decrease own
payoffs but decreases payoffs of others even more in such games.

d. Observability of Preferences: It has been noted in the literature on the evolution of
preferences that the commitment effect of preferences vanishes if preferences are not perfectly
observable (e.g., Samuelson, 2001, Ok and Vega-Redondo, 2001, Ely and Yilankaya, 2001,
Dekel, Ely, and Yilankaya, 2007). We believe that this critique does not apply to our setting
because we show that a preference with complete ignorance is finite population evolutionary
stable. Thus, an action by player with this evolutionary stable preference does not depend on
the observability of the opponents’ actions or preferences. With a different approach, Heifetz,
Shannon, and Spiegel (2007a) also show that payoff maximizing behavior may not need to
prevail even if preferences are imperfectly observable.
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e. Evolutionary Dynamics: So far, we just considered a static concept of evolutionary
stability and were silent on any dynamic process of preference evolution. Only few authors
considered explicitly the dynamics of preference evolution (Huck, Kirchsteiger, and Oechssler,
2005, Sandholm, 2001, Heifetz, Shannon, and Spiegel, 2007b, and Possajennikov, 2005). A
dynamic analysis in our setting should consider beside the preference dynamics also a faster
learning process for equilibrium under Knightian uncertainty. Unfortunately, no learning pro-
cess for equilibrium under Knightian uncertainty has been proposed. Leaving this conceptional
issue aside, we can propose a process of preference adaption based on imitate-the-best. In re-
ality, testimonies of (un-)successful people educate us in some situations on “think positive” or
“be careful” even though this education may not be conscious. Hence it is not unreasonable to
assume that attitudes towards uncertainty may be imitated. Consider the following model of
imitation à la Vega-Redondo (1997): In each period every player has a strict positive probabil-
ity bounded away from one to adjust her preference. If a player adjusts, then she mimics the
preference of the most successful player in the previous round (note that in contrast to above
discussion this imitation process requires that success and preferences are observable). For sim-
plicity consider a finite set of preferences that at least entails complete ignorance and “relevant”
degrees of optimism. The imitation dynamics induces a discrete time finite Markov chain on the
space of preference profiles. Focusing on intra-group symmetric equilibria it can be shown that
the set of absorbing sets includes each identical preference profile. If we assume that each player
may make mistakes in imitating preferences (noise), i.e., with a small probability she selects any
preference profile when adjusting her preference, then the resulting perturbed Markov chain is
ergodic and irreducible. We can now focus on the unique limiting invariant distribution of pref-
erences when the noise goes to zero. This is the long run distribution interpreted as the average
proportion of time a player selects each preference. For aggregative strict submodular games
with aggregate externalities we conjecture based on results by Schipper (2003) and arguments
in the proof of Proposition 8, that the evolutionary stable preference with complete ignorance
and optimism is in the support of the long run distribution, i.e., “stochastically stable”. Sim-
ilarly, for aggregative strict supermodular games with aggregate externalities, we conjecture
that the evolutionary stable preference with complete ignorance and extreme pessimism is in
the support of the long run distribution.

f. Short Run “Industry” Dynamics and Entry: While evolutionary stability focuses on
long run outcomes, in the short run interesting dynamics of profits can arise. Consider a
standard Cournot oligopoly and assume that all firms choose individually optimal according to
the evolutionary stable preference which involves complete ignorance and optimism. Suppose
now that there is a mutant who is a realist. A realist improves her profit compared to her pre-
mutant profit before because she plays a best response to the opponents’ quantities. However,
she raises the profits of the opponents’ even more. Before the realistic mutant is driven out in
the medium run, all may earn higher profits, which may attract entry by additional firms.

g. Strategic Delegation and Optimism: Eichberger, Kelsey, and Schipper (2009) show among
others that a principal prefers to delegate to an optimistic manager in both Cournot and
Bertrand oligopoly. This is surprising since results are usually reversed when one goes from
standard Cournot to standard Bertrand oligopoly. The reason for the results is that an op-
timistic manager in Cournot oligopoly is more aggressive and less expensive, while she is less
aggressive and less expensive in Bertrand oligopoly. From our analysis in this article it is clear
that a principal delegating to an optimistic manager in a supermodular Bertrand oligopoly may
not survive (unless costs of managers are the main factor entering profits). Since the manager is
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less aggressive, the firm may make less material payoffs then a competitor with more pessimistic
manager. If potential investors cannot observe whether firms maximize profits but only which
firm has higher profits and allocate investment funds to firms with profits higher than others,
then firms with principals delegating to an optimistic manager may not survive. This is in
contrast to Cournot oligopoly, in which firms with principals delegating to optimistic managers
survive.

A Proofs

Proof of Lemma 1

If Ai is a subcomplete sublattice of a complete lattice for all players i ∈ N , then it is a complete lattice.
The direct product A−i = ×j∈N\{i}Aj of complete lattices is a complete lattice. By the Frink-Birkhoff
theorem, a lattice is complete if and only if it is compact in its interval-topology (Topkis, 1998, pp. 29).
Since πi is continuous in a−i on A−i for every ai, it follows from Weierstrass’ theorem that it attains
minima and maxima w.r.t. a−i ∈ A−i for every ai ∈ Ai. Thus, both arg maxa−i∈A−i πi(ai, a−i) and
arg mina−i∈A−i

πi(ai, a−i) are nonempty for every ai ∈ Ai. Since A−i is a complete lattice, it has a
greatest and least element in A−i which are supA−i

A−i and infA−i
A−i, respectively. The remainder of

the proof now follows directly from the definitions of positive and negative externalities, respectively. �

Proof of Lemma 2

We prove a more general ordinal version of Lemma 2 that might be interesting on its own right. To this
end, we introduce some definitions. A real valued function f on a partially ordered set X × T satisfies
the (dual) single crossing property in (x, t) on X × T if for all x′′ B x′ and t′′ B t′,

f(x′′, t′) ≥ f(x′, t′) ⇒ (⇐) f(x′′, t′′) ≥ f(x′, t′′), (10)

f(x′′, t′) > f(x′, t′) ⇒ (⇐) f(x′′, t′′) > f(x′, t′′). (11)

We say that f satisfies the strict (dual) single crossing property in (x, t) on X × T if for all x′′ B x′ and
t′′ B t′,

f(x′′, t′) ≥ (>)f(x′, t′) ⇒ (⇐) f(x′′, t′′) > (≥)f(x′, t′′). (12)

It is straight-forward to verify that increasing (decreasing) differences implies the (dual) single crossing
property but not vice versa. The same holds for the strict versions.

Lemma 5 Let G = 〈N, (Ai), (πi)〉 be an aggregative strategic game with Ai being a chain for each i ∈ N ,
and let a◦ be a symmetric ATS profile and a∗ be a symmetric Nash equilibrium of G. If the aggregative
game G is such that πi satisfies

(i) the dual single crossing property in (ai,ℵn(a)) on Ai×X and G has strict negative (resp. positive)
aggregate externalities, or

(ii) the strict dual single crossing property in (ai,ℵn(a)) on Ai×X and G has negative (resp. positive)
aggregate externalities,

then a◦ D a∗ (resp. a◦ E a∗).

Proof. Since a◦ is an ATS and a∗ is a Nash equilibrium of G, we have by definition

πi(a
◦
i ,ℵn(a◦i , a

◦
−i)) ≥ πi(a

∗
i ,ℵn(a◦i , a

◦
−i)), (13)

πi(a
∗
i ,ℵn(a∗i , a

∗
−i)) ≥ πi(a

◦
i ,ℵn(a◦i , a

∗
−i)), (14)

24



for all i ∈ N . Consider case (i), and let G have strict negative aggregate externalities and Ai be a chain.
Suppose to the contrary that for i ∈ N we have a◦i C a

∗
i . By the dual single crossing property of πi in

(ai,ℵ(a)) on Ai ×X,

πi(a
∗
i ,ℵn(a∗i , a

∗
−i)) ≥ πi(a◦i ,ℵn(a◦i , a

∗
−i))⇒ πi(a

∗
i ,ℵn(a∗i , a

◦
−i)) ≥ πi(a◦i ,ℵn(a◦i , a

◦
−i)). (15)

Since G has strict negative aggregate externalities,

πi(a
∗
i ,ℵn(a∗i , a

◦
−i)) ≥ πi(a◦i ,ℵn(a◦i , a

◦
−i))⇒ πi(a

∗
i ,ℵn(a◦i , a

◦
−i)) > πi(a

◦
i ,ℵn(a◦i , a

◦
−i)), (16)

which is a contradiction to inequality (13). The case for strict positive externalities follows analogously.

Now consider case (ii). Again, suppose to the contrary that for i ∈ N we have a◦i C a
∗
i . By the strict

dual single crossing property of πi in (ai,ℵ(a)) on Ai ×X,

πi(a
∗
i ,ℵn(a∗i , a

∗
−i)) ≥ πi(a◦i ,ℵn(a◦i , a

∗
−i))⇒ πi(a

∗
i ,ℵn(a∗i , a

◦
−i)) > πi(a

◦
i ,ℵn(a◦i , a

◦
−i)). (17)

Since G has negative aggregate externalities,

πi(a
∗
i ,ℵn(a∗i , a

◦
−i)) > πi(a

◦
i ,ℵn(a◦i , a

◦
−i))⇒ πi(a

∗
i ,ℵn(a◦i , a

◦
−i)) > πi(a

◦
i ,ℵn(a◦i , a

◦
−i)), (18)

which is a contradiction to inequality (13). The case for positive externalities follows analogously. �

Lemma 2 is now an immediate corollary of Lemma 5.

Proof of Lemma 3

We need to show that if πi is supermodular in ai on Ai and has increasing (resp. decreasing) differences in
(ai, a−i) on A then ui(αi, δi) is supermodular in ai on Ai and has increasing (resp. decreasing) differences
in (ai, a−i) on A for each (αi, δi) ∈ [0, 1]2. If πi is supermodular in ai on Ai and has increasing (resp.
decreasing) differences in (ai, a−i) on A, then for any scalar γ ≥ 0 also γπi is supermodular in ai on
Ai and has increasing (resp. decreasing) differences in (ai, a−i) on A (Topkis, 1998, Lemma 2.6.1. (a)).
♥i and zi are both supermodular in ai on Ai by definition and constant in a−i on A−i. Since ui is for
each (αi, δi) ∈ [0, 1]2 a sum of supermodular functions in ai on Ai having increasing (resp. decreasing)
differences in (ai, a−i) on A, it is supermodular in ai on Ai and has increasing (resp. decreasing)
differences (ai, a−i) on A (Topkis, 1998, Lemma 2.6.1. (b)). By analogous arguments, the result extends
to the strict versions (see Topkis, 1998, p. 49). �

Proof of Lemma 4

By Lemma 3, if G is supermodular (resp. submodular), thenG(α, δ) is supermodular (resp. submodular)
for each (α, δ) ∈ [0, 1]n×[0, 1]n. Thus ui is supermodular in ai on Ai and has increasing (resp. decreasing)
differences in (ai, a−i) on A. Since ui is supermodular in ai on Ai, bi(a−i, αi, δi) is a sublattice of Ai

for each a−i ∈ A−i and (αi, δi) ∈ [0, 1]2 by Topkis (1998), Theorem 2.7.1. Since ui has increasing
(resp. decreasing) differences in (ai, a−i) on A, bi(a−i, αi, δi) is increasing (resp. decreasing) in a−i on
{a−i ∈ A−i : bi(a−i, αi, δi) 6= ∅} for any (αi, δi) ∈ [0, 1]2 by Topkis (1998), Theorem 2.8.1. �

Proof of Proposition 1

If πi is continuous on A−i for every ai ∈ Ai, then ui is well-defined (Remark 1). If πi is upper semicontin-
uous on Ai, then ui is upper semicontinuous on Ai since limits are preserved under algebraic operations.
The result follows now from Lemmata 3 and 4 and Zhou’s (1994) generalization of Tarski’s fixed point
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theorem. �

Note that in Proposition 1 we do not claim that the set of equilibria under Knightian uncertainty
is a sublattice of A. Thus if a = (a1, ..., an) and a′ = (a′1, ..., a

′
n) are both equilibria under Knightian

uncertainty for G(α, δ), then (a1 ∨ a′1, ..., an ∨ a′n) and (a1 ∧ a′1, ..., an ∧ a′n) may not be equilibria under
Knightian uncertainty for the game G(α, δ) (see for an example Zhou (1994), p. 299).

Remark 3 In addition to the assumptions of Proposition 1 assume that n = 2 and that Ai is a chain for
i ∈ {1, 2}. Then then for any (α, δ) ∈ [0, 1]n × [0, 1]n the set of equilibria under Knightian uncertainty
is a subcomplete sublattice and a greatest and least equilibrium exist.

Proof of Remark. This follows from Proposition 1 and a result by Echenique (2003) who observed
that the set of Nash equilibria forms a sublattice in two-player games with totally ordered action sets
for which each player’s best response correspondence is increasing in the strong set order. �

Proof of Proposition 2

Since πi is defined on Ai and the range of sums of opponents actions and continuous in latter, by
arguments similar to the ones for proving Remark 1, G(α, δ) is well-defined for all (α, δ) ∈ [0, 1]n×[0, 1]n.
Submodularity of G implies by Lemma 3 submodularity of G(α, δ) for all (α, δ) ∈ [0, 1]n× [0, 1]n. Thus
for all i ∈ N , ui(αi, δi) has decreasing differences in (ai,

∑
j∈N\{i} aj). By Lemma 4, bi(αi, δi) is

decreasing in
∑

j∈N\{i} aj . Since πi is continuous in both variables, ui(αi, δi) is continuous in ai and∑
j∈N\{j} aj because limits are preserved under algebraic operations. Thus bi(

∑
j∈N\{i} aj , αi, δi) is

non-empty for any
∑

j∈N\{i} aj . It also implies that bi(αi, δi) is upper-hemicontinuous in
∑

j∈N\{i} aj .

Thus the conditions are sufficient for a theorem by Kukushkin (1994) by which there exists a Nash
equilibrium in pure actions of the game G(α, δ). �

Proof of Proposition 3

By Remark 2, bi(a−i, αi, 1) is constant and therefore trivially increasing in a−i on A−i for any αi ∈ [0, 1]
for all i ∈ N . Hence the result follows as a special case from the proof of Proposition 1. �

Proof of Proposition 4

For an equilibrium under Knightian uncertainty to exist for (α,1), ui(αi, 1) must be well-defined. If πi
is strictly concave in ai, then for any αi ∈ [0, 1], ui(αi, 1) is strictly concave in ai since it is a weighted
sum of strictly concave functions. Strict concavity of ui(ai, 1) is sufficient for bi(a−i, αi, 1) being unique
for all a−i ∈ A−i. By Remark 2, if δi = 1 then bi(a−i, αi, 1) is constant for all a−i ∈ A−i. Hence, if there
exists an equilibrium under Knightian uncertainty with δi = 1 for all i ∈ N , then it must be unique with
each player choosing her strictly dominant action. �

Proof of Proposition 5

Proposition 5 is a direct corollary of the following two lemmata:

Lemma 6 If πi has

• increasing differences in (ai, a−i) on A and positive (resp. negative) externalities, or
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• decreasing differences in (ai, a−i) on A and negative (resp. positive) externalities,

then ui has increasing (resp. decreasing) differences in (ai, αi) on Ai × [0, 1] for all a−i ∈ A−i and
δi ∈ [0, 1]. The result extends to the strict versions.

Proof of Lemma. If πi has decreasing (increasing) differences in (ai, a−i) on A then for all a′′i B a
′
i,

πi(a
′′
i , sup

A
A−i)− πi(a′i, sup

A
A−i) ≤ (≥)πi(a

′′
i , inf

A
A−i)− πi(a′i, inf

A
A−i).

By Remark 1 it follows that if πi has [decreasing differences in (ai, a−i) on A and negative (resp. positive)
externalities] or [increasing differences in (ai, a−i) on A and positive (resp. negative) externalities], then
for all a′′i B a

′
i,

zi(a
′′
i )−zi(a

′
i) ≤ (≥)♥i(a

′′
i )−♥i(a

′
i). (19)

Let α′i, α
′′
i ∈ [0, 1] with α′′i ≥ α′i. It follows from the last inequality that

α′′i [(♥i(a
′′
i )−♥i(a

′
i))− (zi(a

′′
i )−zi(a

′
i))] ≥ (≤)

α′i[(♥i(a
′′
i )−♥i(a

′
i))− (zi(a

′′
i )−zi(a

′
i))]. (20)

This is equivalent to

α′′i [♥i(a
′′
i )−♥i(a

′
i)]− α′′i [zi(a

′′
i )−zi(a

′
i)] ≥ (≤)

α′i[♥i(a
′′
i )−♥i(a

′
i)]− α′i[zi(a

′′
i )−zi(a

′
i)] (21)

α′′i [♥i(a
′′
i )−♥i(a

′
i)] + [zi(a

′′
i )−zi(a

′
i)]− α′′i [zi(a

′′
i )−zi(a

′
i)] ≥ (≤)

α′i[♥i(a
′′
i )−♥i(a

′
i)] + [zi(a

′′
i )−zi(a

′
i)]− α′i[zi(a

′′
i )−zi(a

′
i)] (22)

α′′i [♥i(a
′′
i )−♥i(a

′
i)] + (1− α′′i )[zi(a

′′
i )−zi(a

′
i)] ≥ (≤)

α′i[♥i(a
′′
i )−♥i(a

′
i)] + (1− α′i)[zi(a

′′
i )−zi(a

′
i)]. (23)

Consider any δi ∈ [0, 1]. Then the previous inequality implies

α′′i δi[♥i(a
′′
i )−♥i(a

′
i)] + (1− α′′i )δi[zi(a

′′
i )−zi(a

′
i)] ≥ (≤)

α′iδi[♥i(a
′′
i )−♥i(a

′
i)] + (1− α′i)δi[zi(a

′′
i )−zi(a

′
i)], (24)

which in turn implies

α′′i δi[♥i(a
′′
i )−♥i(a

′
i)] + (1− α′′i )δi[zi(a

′′
i )−zi(a

′
i)]+

(1− δi)[πi(a′′i , a−i)− πi(a′i, a−i)] ≥ (≤)

α′iδi[♥i(a
′′
i )−♥i(a

′
i)] + (1− α′i)δi[zi(a

′′
i )−zi(a

′
i)] +

(1− δi)[πi(a′′i , a−i)− πi(a′i, a−i)] (25)

δi[α
′′
i♥i(a

′′
i ) + (1− α′′i )zi(a

′′
i )] + (1− δi)πi(a′′i , a−i)

−δi[α′′i♥i(a
′
i) + (1− α′′i )zi(a

′
i)]− (1− δi)πi(a′i, a−i) ≥ (≤)

δi[α
′
i♥i(a

′′
i ) + (1− α′i)zi(a

′′
i )] + (1− δi)πi(a′′i , a−i)

−δi[α′i♥i(a
′
i) + (1− α′i)zi(a

′
i)]− (1− δi)πi(a′i, a−i). (26)

Hence we have

ui(a
′′
i , a−i, α

′′
i , δi)− ui(a′i, a−i, α′′i , δi) ≥ (≤) ui(a

′′
i , a−i, α

′
i, δi)− ui(a′i, a−i, α′i, δi). (27)

The proof holds analogously for strict versions. �
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Lemma 7 (Monotone Optimal Selections) If ui(ai, a−i, αi, δi) is supermodular in ai on Ai and has
increasing (resp. decreasing) differences in (ai, αi) on Ai× [0, 1] for each a−i ∈ A−i and δi ∈ [0, 1], then
bi(a−i, αi, δi) is increasing (resp. decreasing) in αi on {αi ∈ [0, 1] : bi(a−i, αi, δi) 6= ∅} for δi ∈ [0, 1]. If
in addition ui(ai, a−i, αi, δi) has strictly increasing (resp. decreasing) differences in (ai, αi) on Ai× [0, 1]
for each a−i ∈ A−i and δi ∈ [0, 1], α′′i > α′i in [0, 1], and for any a−i ∈ A−i, a′i ∈ bi(a−i, α′i, δi) and
a′′i ∈ bi(a−i, α

′′
i , δi), then a′i E (D)a′′i . In this case, if one picks any ai(αi) in bi(a−i, αi, δi) for each

αi with bi(a−i, αi, δi) nonempty, then ai(αi) is increasing (resp. decreasing) in αi on {αi ∈ [0, 1] :
bi(a−i, αi, δi) 6= ∅}.

Proof of Lemma. Pick any α′′i and α′i in [0, 1] with α′′i > α′i, and for any (a−i, δi) ∈ A−i × [0, 1],
a′i ∈ bi(a−i, α′i, δi) and a′′i ∈ bi(a−i, α′′i , δi).

First, consider strictly increasing differences of ui in (ai, αi), and suppose that it is not true that
a′iEa

′′
i . Then a′′i Ca

′
i∨a′′i and so using the hypothesis that ui(ai, a−i, αi, δi) is for any (a−i, δi) ∈ A−i×[0, 1]

supermodular in ai and has strictly increasing differences in (ai, αi),

0 ≤ ui(a
′
i, a−i, α

′
i, δi)− ui(a′i ∧ a′′i , a−i, α′i, δi)

≤ ui(a
′
i ∨ a′′i , a−i, α′i, δi)− ui(a′′i , a−i, α′i, δi)

< ui(a
′
i ∨ a′′i , a−i, α′′i , δi)− ui(a′′i , a−i, α′′i , δi) ≤ 0, (28)

which yields a contradiction.

Second, consider strictly decreasing differences of ui in (ai, αi), and suppose that it is not true that
a′iDa

′′
i . Then a′iBa

′
i∨a′′i and so using the hypothesis that ui(ai, a−i, αi, δi) is for any (a−i, δi) ∈ A−i×[0, 1]

supermodular in ai and has strictly decreasing differences in (ai, αi),

0 ≤ ui(a
′′
i , a−i, α

′′
i , δi)− ui(a′i ∧ a′′i , a−i, α′′i , δi)

≤ ui(a
′
i ∨ a′′i , a−i, α′′i , δi)− ui(a′′i , a−i, α′′i , δi)

< ui(a
′
i ∨ a′′i , a−i, α′i, δi)− ui(a′i, a−i, α′i, δi) ≤ 0, (29)

which yields a contradiction. �

The first part of the proof of Lemma 7 is analogous to Topkis (1978) (see also Topkis, 1998, Theorem
2.8.4.).

Proof of Proposition 7

Let G be a submodular game with negative externalities and δ = 1 (i.e., unit vector), and consider the
greatest equilibrium under Knightian uncertainty ā(α) when the profile of degrees of optimism is α.
Let α′ ≥ α. Suppose now to the contrary that the greatest equilibrium under Knightian uncertainty
ā(α′) is smaller or incomparable to ā(α). In both cases there exist a player i whose equilibrium actions
satisfy āi(α

′) is strictly smaller or incomparable to āi(α). Note that āi(α
′) ∈ bi(ā−i(α

′), α′i, 1) and
āi(α) ∈ bi(ā−i(α), αi, 1). Since δi = 1, bi is constant in a−i by Remark 2. Hence, bi(ā−i(α), αi, 1) 6=
bi(ā−i(α

′), α′i, 1) only if α 6= α′. By Proposition 5, bi(ā−i(α), αi, 1) is increasing in αi, i.e., āi(α
′) ∨

āi(α) ∈ bi(a−i(α′), α′i, 1). Let ãi(α
′) = āi(α

′) ∨ āi(α). Then ãi(α
′)D āi(α′). We distinguish two cases:

If ãi(α
′) = āi(α

′), then āi(α
′) D āi(α), a contradiction. Otherwise, if ãi(α

′) B āi(α′), then there is a
contradiction to āi(α

′) being a component of the largest equilibrium under Knightian uncertainty with
α′ and δ = 1. An analogous arguments holds for positive externalities and for the least equilibrium
under Knightian uncertainty. �

Proof of Proposition 8

(i) and (ii): First, by assumption, a symmetric ATS exists for G. We denote it by a◦. It follows from
Assumption 2 that there exists a preference t◦ = (δ◦, α◦) with δ◦ = 1 (and some α◦) such that there is
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a symmetric EKU with a∗(t◦) = a◦.

Second, we show that there exists a t◦ with an EKU of G, a∗(t◦) = a◦ such that t◦ is optimistic.
It is sufficient to show that for δ◦ = 1 there exists α◦ ∈ [0, 1] s.t. α◦ ≥ α∗, where α∗ = max{α′ ∈
[0, 1] : a∗(α′, (1, ..., 1)) ∈ Esym(G(α′, (1, ..., 1)) ∩ Esym(G)}. Suppose to the contrary that for all α with
a∗(α) = a◦ we have α < α∗. By Proposition 7, a∗(α) E a∗(α∗), a∗(α) ∈ E(G(α, (1))). By Lemma 2,
a◦ D a∗. Hence we must have a∗(α) = a∗(α∗). But then set α = α∗, a contradiction.

Third, we show that t◦ is a globally stable fESP. In particular, we show that if the EKU a∗(t◦) is

a symmetric ATS, then t◦ is a globally stable fESP in G. Denote by t′ := (

m︷ ︸︸ ︷
t′, ..., t′, t◦, ..., t◦) for some

m ∈ {1, ..., n− 1} and t′ ∈ TG. Recall that we denote by j a mutant (playing t′) and by i a non-mutant
(playing t◦). By the definition of ATS,

π(a∗i (t◦),ℵn(a∗(t◦))) ≥ π(a∗j (t′),ℵn(a∗(t◦))) (30)

for all t′ ∈ TG. If a∗i (t◦)B(C)a∗j (t′) for all mutants j, then a∗(t◦)B(C)a∗(t′). This implies by decreasing
differences,

π(a∗i (t◦),ℵn(a∗(t′))) ≥ π(a∗j (t′),ℵn(a∗(t′))). (31)

By Remark 2 all non-mutants have constant best response selections. Therefore we can select a∗(t′) ∈
Esym(G(t′)) such that a∗i (t◦) = a∗i (t′) for all non-mutants i. Hence,

π(a∗i (t′),ℵn(a∗(t′))) ≥ π(a∗j (t′),ℵn(a∗(t′))). (32)

Since this holds for all m ∈ {1, ..., n− 1} and all t′ ∈ TG, we have that t◦ is a GfESP in G. The case of
positive externalities follows analogously.

(iii): We note that if for all players π is strictly concave in the player’s own action ai on A for all
a−i on A−i, then so is ui since it is a sum of strictly concave functions, each term multiplied by positive
scalar, and because of aggregate externalities, the worst and best-case actions of the opponents do not
depend on the player’s own action. Hence, for all i ∈ N , each a−i and each ti, we have that b(a−i, ti)
is a singleton. By Remark 2 that b(a−i, αi) is a constant function on A−i for each αi. Therefore for all
non-mutants a∗i (t◦) = a∗i (t′) for all a∗(t′) ∈ Esym(G(t′)). Hence t◦ is a robust fESP. This completes the
proof of the proposition. �

Proof of Proposition 9

Lemma 8 Suppose that the strategic game G = 〈N,A, π〉 has positive (resp. negative) externalities, and
let ā and a be the greatest and least combination of actions in A. If a (resp. ā) is a Nash equilibrium
of G, then a (resp. ā) is a finite population evolutionary stable strategy in G.

Proof of Lemma. If G has positive (resp. negative) externalities, let a := a (resp. a := ā). Since
a = (a, ..., a) is a Nash equilibrium of G,

π(a, ..., a) ≥ π(a′, a, ..., a) for all a′ ∈ A. (33)

We need to show that

π(a, a′, a, ..., a) ≥ π(a′, a, ..., a) for all a′ ∈ A. (34)

Given both inequalities, it is sufficient to show

π(a, a′, a, ..., a) ≥ π(a, ..., a) for all a′ ∈ A. (35)
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But last inequality follows immediately from positive (resp. negative) externalities and the fact that
a := a (resp. a := ā). �

Proof of Proposition 9. (i) and (ii): Suppose that the game has positive (resp. negative) aggregate
externalities and consider the lowest (resp. highest) symmetric profile of actions a (resp. ā). By
Assumption 3 this profile of actions is a Nash equilibrium of the game G.

If G has positive (resp. negative) externalities, a := a (resp. a := ā) is by Lemma 8 a finite
population evolutionary stable strategy in G.

We claim that a is an ATS. Since G is an aggregative game, we have by definition of fESS,

π(a,ℵn(a′, a, ..., a)) ≥ π(a′,ℵn(a′, a, ..., a)) for all a′ ∈ A. (36)

By increasing differences, fESS implies ATS,

π(a,ℵn(a, ..., a)) ≥ π(a′,ℵn(a, ..., a)) for all a′ ∈ A. (37)

By Assumption 2 there exists a preference t with δ = 1 such that a symmetric EKU satisfies
a∗(t) = a. Consider the preference t = (δ, α) with δ = 1 and α = 0. From Proposition 6 follows that a
symmetric EKU with the symmetric profile of preferences t = (t, ..., t) satisfies a∗(t) = a.

Inequality (36) implies

π(a∗i (t),ℵn(a∗(t′j , t−j))) ≥ π(a∗j (t′j , t−j),ℵn(a∗(t′j , t−j))) for all t′ ∈ TG. (38)

By Remark 2 all non-mutants have constant best response selections. Therefore we can select a∗(t′j , t−j) ∈
Esym(G(t′j , t−j)) such that a∗i (t) = a∗i (t′j , t−j) for all non-mutants with t and any mutant with any
t′ ∈ TG. Hence

π(a∗i (t′j , t−j),ℵn(a∗(t′j , t−j))) ≥ π(a∗j (t′j , t−j),ℵn(a∗(t′j , t−j))) for all t′ ∈ T, (39)

i.e., t is a fESP in the game G.

(iii) We note that if π is strictly quasi-concave in the player’s own action ai on A for all a−i on
A−i, then ui(1, 0) = z is strictly quasi-concave in the player’s own action ai on A. Hence b(a−i, (1, 0))
is a singleton for each a−i. By Remark 2 we have that b(a−i, (1, 0)) is a constant function on A−i.
Hence a∗i (t) = a∗i (t′j , t−j) for all equilibria a∗(t′j , t−j) ∈ Esym(G(t′j , t−j)). This completes the proof of
the proposition. �
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