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1 Introduction

Over the past twenty years or so, a small but growing literature has emerged with the aim
of modeling agents who are unaware of certain things. Early examples include Fagin and
Halpern [4] and Modica and Rustichini [11]. More recently, a number of authors have begun
to examine the implications of unawareness in economic theory (see e.g. Chung & Fortnow
3], Tirole [12], and Filiz-Ozbay [5]). In this paper we compare two different approaches to
modeling unawareness: the object-based approach of Board & Chung [2] and the subjective-
state-space approach of Heifetz et al. [8]. In particular, we show that subjective-state-
space models (henceforth HMS structures) can be embedded within object-based models
(henceforth OBU structures), demonstrating that the latter are at least as expressive. As
long as certain restrictions are imposed on the form of the OBU structure, the embedding
can also go the other way. A generalization of HMS structures (relaxing the partitional
properties of knowledge) gives us a full converse. Given the rather different interpretations of
each approach offered by their respective authors, we believe that these results may enhance

our understanding of each.

*We thank Eddie Dekel, Joe Halpern, Aviad Heifetz, and Ming Li for helpful discussions. Burkhard
gratefully acknowledges financial support from the NSF SES-0647811.



2 Two models of unawareness

In what follows, we provide a brief presentation of OBU structures and HMS structures.
More details, along with proofs of results can be found in Board & Chung [2] and Heifetz et
al. [8,9].

2.1 The object-based approach (Board & Chung [2])
An OBU structure is a tuple (W, O, {Z;}, {A;}), where:

e W is a set of states;
e O is a set of objects;
o 7, : W — 2W is an information function for agent i; and

o A;: W — 29 is an awareness function for agent i.

Intuitively, Z;(w) indicates the states that agent i considers possible when the true state
is w, while A;(w) indicates the objects she is aware of.!

In the standard information partition model familiar to economists, events are subsets of
the state space, corresponding (roughly) to the set of states in which some given proposition
is true. In our model, an event is an ordered pair (R,S), where R C W is a set of states and
S C O is a set of objects; we call R the reference of the event, corresponding (as before) to
the set of states in which some proposition is true; and S is the sense of the event, listing
the set of objects referred to in the description of the proposition. (To give an example,
the events representing the propositions “the dog barked” and “the dog barked and the cat
either did or did not meow” have the same reference but difference senses.) We sometimes
abuse notation and write (R, a) instead of (R, {a}), and (w,S) instead of ({w},S). We use £
to denote the set of all events, with generic element E.

We now define two operators on events, corresponding to “not” and “and”.

-(R,S) = (W\R,S)
Ni(Ry,S5) = (MR}, U;S;5).

In Board & Chung [2] OBU structures also include a subset O,, of O for each state w € W. The scope of
quantifiers at a given state w includes only the objects in O,, (the real objects), rather than all of the objects
in O. Allowing the O,, sets to vary across states enables us to captures agents’ uncertainty about whether
they are aware of everything or not, e.g. “Peter is not sure whether he is aware of everything”. The reader
who is familiar with Board & Chung [2] can treat the OBU structures in this paper as special cases where
0O,, = O for all w.



The negation of an event holds at precisely those states at which the event does not hold,
but it refers to the same set of objects. The conjunction of several events holds only at those
states at which all of those events hold, and it refers to each set of objects. It will often be
convenient to use disjunction “or” as well, defined in terms of negation and conjunction as
follows:

V;(R;,S;) = ~(A=(R;,S5))
= (U;jR;, U;S;).

We also introduce three modal operators for each agent, representing awareness, implicit

knowledge, and explicit knowledge:

Ai(R,S) = ({w | S C A;(w)},S) (awareness) (1)
L:(R,S) = ({w | Z:(w) C R},S) (implicit knowledge) (2)
Ki(R,S) = A;(R,S) ALi(R,S) (explicit knowledge) (3)

Intuitively, an agent is aware of an event at w if she is aware of every object in the sense of
the event; and the agent implicitly knows an event at state w if the reference of the event
includes every state she considers possible. However, implicit knowledge is not the same as
explicit knowledge, and the latter is our ultimate concern. Implicit knowledge is merely a
benchmark that serves as an intermediate step to modeling what an agent actually knows.
Intuitively, an agent does not actually (i.e., explicitly) know an event unless he is aware of
the event and he implicitly knows the event. Notice that A;, L;, and K; do not change the
set of objects being referred to.

It is easy to verify that awareness and (implicit) knowledge satisfy the following properties

(where we suppress the agent-subscripts):
A1 NARSS)) = AR, U;S5)

A2 A(R,X) = A(R’,X) for all R, R’

A3 AR,2) = (W, 9)

A4 A(R,X) = (R, X) for some R’

L1 L(W,0) = (W,0)

L3 L(R,S) = (R,S) for some R



L4 if L(R,S) = (R,S) then L(R,S') = (R',S)

In Board & Chung [2] we show that the converse is also true: any awareness/knowledge
operator satisfying these properties can be derived from some awareness/information func-
tion. Thus A1-A4 and L1-L4 provide a precise characterization of awareness and (implicit)

knowledge, respectively.
Proposition 1 Suppose that A; is defined as in (1). Then:

1. A; satisfies A1-A4; and

2. if A} is an operator on events which satisfies A1-A4, we can find an awareness function
A; such that A, and A; coincide.

Proposition 2 Suppose that L; is defined as in (2). Then:

1. L; satisfies L1-L4; and

2. if L, is an operator on events which satisfies L1-L4, we can find an information func-

tion I; such that L; and L; coincide.

Aside: a formal language

For the sake of transparency, and to aid interpretation, we now show how OBU structures
can be used to provide truth conditions for a formal language, a version of first-order modal
logic.? We start with a set of (unary) predicates, P,Q, R, ..., and an (infinite) set of variables,
x,Yy,2,.... Together with set of objects, O, this generates a set ® of atomic formulas,
P(a), P(z),Q(a),Q(x), ..., where each predicate takes as its argument a single object or
variable. Let F be the smallest set of formulas that satisfies the following conditions:

o if p € &, then ¢ € F;
o if 1) € F, then ~¢p € F and ¢ ANy € F;
e if p € F and x € X, then V¢ € F;

o if p € F, then L;¢p € F and A;a € F and K;a € F for each agent 1.

2In Board & Chung [1], we offer a sound and complete axiomatization of this language.



Formulas should be read in the obvious way; for instance, VzA; P(z) is to be read as “for
every x, agent ¢ is aware that x possesses property P.” Notice, however, that it is hard to
make sense of certain formulas: consider P(x) as opposed to P(a) or VxP(x). Although it
may be reasonable to claim that a specific object, a, is P, or that every x is P, the claim
that x is P seems empty unless we specify which object variable x stands for. In general,
we say that a variable z is free in a formula if it does fall under the scope of a quantifier
Va, and define our language £ to be the set of all formulas containing no free variables.®* We
use OBU structures to provide truth conditions only for formulas in £, and not for formulas
such as P(z) that contain free variables.

Take an OBU structure M = (W,0,{Z;},{A;}), and augment it with an assignment
m(w)(P) C O of objects to every predicate at every state (intuitively, w(w)(P) is the set of
objects that satisfy predicate P). If a formula ¢ € L is true at state w of OBU structure M

under assignment m, we write (M, w, ) F P(a); F is defined inductively as follows:
(M,w, ) F P(a) iff a € w(w)(P);
(M,w, ) E —¢ iff (M,w, ) [~ ¢;
(M,w,m)E oA iff (M,w,7)F ¢ and (M,w, ) E 1;

(M,w, ) E Ve iff (M,w, ) E ¢la\z] for every a € O (where ¢[a\z] is ¢ with all free

occurrences of x replaced with a);?*

(M,w, ) FE A0 iff a € A;(w) for every object a in ¢;
(M,w, ) F Lo iff (M,w' 7)E ¢ for all w € Z;(w);

(M,w, ) E Ko iff (M,w,n)FE A¢ and (M,w, ) E L.

Notice that there is a close connection between sentences of £ and OBU events: for any
given ¢ € L, the reference of the corresponding OBU event is given by the set of states at

which ¢ is true, while the sense is simply the set of objects in ¢

3More formally, we define inductively what it is for a variable to be free in ¢ € F:
e if ¢ is an atomic formula of the form P(z) where z is a variable, then z is free in ¢;
e x is free in —¢, K;¢, A;¢, and L;¢ iff = is free in ¢;
e z is free in ¢ A ¢ iff x is free in ¢ or ¥;
e 1z is free in Vy¢ iff = is free in ¢ and z is different from y.

4In Board & Chung [2], OBU structures also specify a subset O,, of O for every w € W. In this more
general case, we define (M,w, ) F Vz¢ iff (M,w, ) F ¢[a\z] for every a € O,,.



To help understand how OBU structures work, consider the following simple example.
There are two agents, 1 and 2, and two objects, a and b. There are two issues which are of
(potential) interest to our agents: whether or not object a is P, and whether or not object
b is @ (to borrow a famous example, our agents might be interested in whether or not a
dog barks, and whether or not a cat meows). Assume that Agent 1 is aware of object a and
knows whether it is P or not, but agent 2 is not and does not. On the other hand, agent 2
is aware of object b and whether it is ) or not, while agent 1 is not and does not.

One OBU structure that could be used to reason about this situation is shown in Figure
1 below. There are two objects, O = {a, b}, and four states, W = {PQ, P-Q, -PQ, -P—-Q},
where e.g. state =PQ can be thought of as corresponding to the situation where a is not P
but b is Q.5 Agent 1’s (partitional) information function is given by Z;(PQ) = Z; (P-Q) =
{PQ,P-Q} and Z;(-PQ) = Z;(-P-Q) = {-PQ,-P—-Q}, and is described by the dashed
blue rectangles in Figure 1. Her awareness function is given A;(w) = {a} for allw € W,
and is described by the dashed blue arrows. Similarly, agent 2’s information function and

awareness function are described by the solid red arrows.

Figure 1: An OBU structure

Recall that in an OBU structure, an event is an ordered pair (R,S), where R C 2W
and S C 2°. In this example, then, there are 2% x 22 = 64 distinct OBU events. For
many of these, the interpretation is clear: for instance, the event ({PQ,P—Q},a}) can be
interpreted as “object a is P”. But what about the event ({P—|Q, -P-Q}, @)? This event
holds when and only when object b is not (), and yet neither of the objects, in particular not
object b, are used to describe it. A natural translation of this event into English would be

“nothing is @” (indeed, with reference to language described above, the formula Vz—P(x)

5For our current purposes, the labeling of the states serves merely to suggest a possible interpretation
to the reader and to aid comprehension. This interpretation could be formalized as described above, by
augmenting the OBU structure with an assignment. In Board & Chung [2] we show how to model properties
of objects explicitly as mappings from objects to states, without reference to a formal language



would be true in precisely states P=Q and -P—Q according to the obvious assignment). In
the current example, agent 1 does not know this event (implicitly or explicitly) in any of
the states, although she does consider it possible—even though she is unaware of object
b. Intuitively, she doesn’t rule out the possibility that something is @, even though she
can’t imagine what. When the true state is PQ, for example, this is captured by the fact
that she considers both states PQ and P—Q to be possible. Note that is a modeling choice.
We could have made different ones: In particular, we could have assumed that if an agent
is not aware of anything which possesses a particular property, then that agent believes
that nothing is @; this would generate for agent 1 the (irreflexive) information function
7, (PQ) = Z:(P-Q) = {P—-Q}. Alternatively, we could have assumed that if an agent is
not aware of anything which possesses a particular property, then that agent believes that
for sure something possesses that property; this would generate for agent 1 the (irreflexive)
information function Z; (PQ) = Z;(P—-Q) = {PQ}. Without a specific context in mind, none
of these three modeling choices seems to us more appropriate than the others.

Tables 1 and 2 below describe the agents’ awareness and knowledge of these two events,

which we label E and F respectively.

Agent 1 Agent 2
basic event E = ({PQ,P-Q},a) E = ({PQ,P-Q}.a)
awareness A (E) = ( ) A (E) = ( )
implicit knowledge Li(E) = ({PQ,P-Q},a) L>(E) = (2, a)
explicit knowledge Ki(E) = ({PQ,P-Q},a) K2(E) = (2, )

Table 1: “object a is P”

Agent 1 Agent 2
basic event F= ({P—|Q -P-Q}, @) F= ({P—Q -P-Q}, @)
awareness A (F) = (W, 2) As(F) = (W, 2)
implicit knowledge Li(F) = (2, 9) Lo(F) = (P-Q,-P-Q, 2)
explicit knowledge Ki(F) = (2,9) Ky(F) = (P-Q,~P—-Q, 2)

Table 2: “nothing is Q”



2.2 The subjective-state-space approach (Heifetz et al. [8, 9])

An HMS structure® is a tuple (S, =<,r,II;). The first three components describe the event
space. First, S = {Sa},c4 is a complete lattice of disjoint state spaces, partially ordered by
<. The intended interpretation of the ordering is that if S < S’, then S is less expressive
than S’. 3 = [J,c4 Sa is used to denote the set of all states.

Next, r = {rg }S,S’ES with S<S' /
to every space that is (weakly) less expressive: if w € S, then rg (w) is the restriction of

is a set of surjective projections from each state space

the description of w to the more limited vocabulary of S. These functions are required to
commute (so that if § < .S" < S, then 7§ =rg org ), and 73 is the identity function. The
following notation will prove useful. Suppose S < S”: then if w € S’, let wg = 73 (w); and
if BC S’ let Bg = {wg | w € B}.

For B C S, denote by B! = Uysris<sy (rg/)_l (B) the extension of B to all more expres-
sive vocabularies. Then E C ¥ is an HMS event if it is of the form B! for some B C S and
some S € S. B is called the basis of E, and S = S (F) the base-space.

If B! is an HMS event with basis B C S, its negation =B is defined by (S \ B)T. To
handle the case where B = S, Heifetz et al. [8] introduce a distinct event @ (“a logical
contradiction phrased with the expressive power available in S”) for each S € S, and define
-ST = @% and -@° = ST.

The conjunction of a set of events {B/T\} is simply the intersection:
A\ B =[5
A A

while disjunction is defined from conjunction in the usual way:

T T
\/ Bl =~ ( A ﬁBA)
A A
(note that the disjunction of a set of events is not equal to their union, except in the special
case where they all have the same base-space).

The II; functions are designed to capture the agents’ knowledge and awareness. Agent

i’s possibility correspondence I1; : ¥ — 2%\ & is assumed to satisfy the following properties:

(0) If w € S then II;(w) C S’ for some " < S. Confinement
(1) w e II! (w) for every w € X. Generalized Reflexivity
(2) w' € II;(w) implies IL;(w’) = II;(w) Stationarity

6We follow the original notation and presentation as closely as possible in this section.



(3) fwe S, wellj(w) and S < 5" then wg € II;(ws) Projections Preserve Awareness
(4) If w € S" and S < S’ then II! (w) C I (wg) Projections Preserve Ignorance

(5) If § 8" <5" we S and II;(w) C 5 then Projections Preserve Knowledge
(i(w))s = Ti(ws)

Generalized reflexivity and stationarity are the analogues of the partitional properties
of possibility correspondences in partitional information structures. Note, however, that II;
does not necessarily partition the state space X. In particular, there could be states in some
space at which the possibility set of agent ¢ is in a different space. Nevertheless, all of the
properties of knowledge associated with partitional possibility correspondences in standard
state-space models are satisfied (see below). We also consider the case where only properties
(0), (3), (4), and (5) are imposed, and refer to this larger class of models as generalized HMS
structures.”

The knowledge operator can now be defined.
Ki(E) ={we X |I;(w) C E}
if there is a state w such that II;(w) C E, or
Ki(E) = 2°®)

otherwise.

Awareness is defined by:®
A(B) = {w € S| Ti(w) € S(B)'}
if there is such a state w such that IT;(w) C S(E)', or
A(E) = o)

otherwise.
Heifetz et al. [8] show that in HMS structures, the knowledge operator satisfies the

following properties:

THalpern & Rego [7] also consider such a generalization. Heifetz et al. [10] introduce unawareness
structures with probabilistic beliefs that are not required to satisfy generalized reflexivity.

8Note that Heifetz et al. [8] use a different definition of unawareness: A4;(E) = K;(E)UK;(—=K;(E)) (this
definition was first adopted by Modica & Rustichini [11]). Although the two definitions coincide in HMS
structures (see Halpern & Rego [7] or Heifetz et al. [9], Remark 6), the Modica & Rustichini definition is
not appropriate for the case of generalized HMS structures.



(o) If E' is an event, then K;(F) is an S(E)-based event

(i) Ki(¥) =%

(i) Ki (Mrer B3) = NMaer Ki(E))
(iii) K:(E)C E
(iv) Ki(E) C KiKi(E)

(v) E C F implies K;(E) C K;(F)

(vi) =K;(E)N-K;~K;(FE) C - K;,~K;~K;(E)

Necessitation
Conjunction

Truth

Positive Introspection
Monotonicity

Negative Non-Introspection

And Heifetz et al. [8, 9] show that in HMS structures the following properties hold for

awareness and knowledge-awareness interaction. Letting U;(E) abbreviate —A;(E):

(vii) Ai(E) = K;(E) U K,(~K;(E))
(viil) KUy (E) = @5F)
(ix) Uy(E) = UUy(E)
(x) Ai(E) = Ki(S(B)!)
(xi) Ui(E) = M2y (K)"(E)
(xii) ~K;(E) N A-K(E) = K;-K;(E)
(xiii) A;i(—E) = A;(E)
(xiv) Myep Ai(E2) = Ai (Myer Br)
(xv) A;Ki(E) = A;(E)
(xvi) A;A(E) = Ai(E)

Plausibility

KU Introspection

AU Introspection

Weak Necessitation

Strong Plausibility

Weak Negative Introspection
Symmetry

A-Conjunction

AK-Self Reflection

AA-Self Reflection

A-Introspection

For generalized HMS structures, however, some of these properties may not hold.

Proposition 3 Consider a generalized HMS structure:

1. The knowledge operator K; satisfies property (o), Necessitation, Conjunction, and

Monotonicity.



2. The awareness and knowledge operators, A; and K;, satisfy Plausibility with “O",
AU Introspection, Weak Necessitation, Strong Plausibility with “C7, Symmetry, A-
Conjunction, AK-Self Reflection, AA-Self Reflection, and A-Introspection with “C7.

In the appendix, we show that Negative Non-Introspection and Weak Negative Introspec-
tion may fail when Stationarity is violated (Example 1), and that KU-Introspection may
fail when both Generalized Reflexivity and Stationarity are violated (Example 2).

To illustrate the mechanics of HMS structures, consider the example from the previous
subsection. Recall that agent 1 is aware of object a, and knows whether or not it is P, while
agent 2 is aware of object b, and knows whether or not it is (). An HMS structure describing

this situation shown in Figure 2 below.

(PQ)re (P-Q)ro & Seo
/(—/./P—vQ)P,QCK

So

Figure 2: Example of an HMS structure

The four state spaces S = {S{p,Q}, S¢py, S1Qy S@} (using the obvious notation) are in-
dicated by solid black rectangles. The states are labeled according to whether or not a is
P and b is ), and according to the expressiveness of the vocabulary. For example, at state
(-PQ)qg € Siq}, object ais not P, but object b is @, and the vocabulary of that state space is
rich enough only to talk about whether or not object b is @); and at state (PQ)g € Sy, ais P
and b is @), although the vocabulary of that state space is not rich enough to talk about either

11



of these properties. The r projection functions have been omitted to avoid clutter, but can be

figured out from the descriptions of the states, so for example T?ﬁ,}: ‘}Q}( P-Q)po = (P-Q)p,

Pl (P=Q)pg = (P=Q)q, and rgl™ (P=Q)pq = (P~Q)s.

The possibility correspondences for each agent are described by the colored arrows and
ovals, dashed blue for agent 1 and solid red for agent 2. For a given state w, if w is in an
oval, then II;(w) is given by all of the states in that oval; otherwise, if I1;(w) is given by the
the states at which the arrow from w points. For example, II;((PQ)pg) = I ((PQ)p) =
{(PQ)p, (P=Q)p}, while I ((PQ)q) = IL((PQ)s) = {(PQ)e, (P-Q)s}.

Recall that in an HMS structure, an event is a subset of some base space, along with all
the states in more expressive state spaces that project onto a state in this subset. Thus in
the HMS structure above, there are 64 distinct events (see Table 3 below).

Base space
Sir.a) Sipy Sie) Se
odr.ay oStry ey o5
{(PQ)reo} {(PQ)r, (PQ)rqr | {(PQ)q, (PQ)rqg}
{(P-Q)rq} {(P=Q)p, (P=Q)rq} | {(P-Q)q, (P-Q)rq}
{(=PQ)rq} : :
{(=P=Q)prq}

{(PQ)re: (P=Q)pre}

Table 3: HMS events

In section 2.1 above, we considered an OBU event E corresponding to the sentence “object
a is P”, and an OBU event F corresponding to the sentence “nothing is ()”. In the HMS

structure just described, the equivalent events would be

E= {(PQ)P’ (P_'Q>P7 (PQ>P,Q’ (PﬁQ)PvQ}7 and
F={(P-Q)z, (~P=Q)z, (P-Q)p, (~P-Q)p,(P~Q)q, (~P=Q)q, (P~Q)rq, (mP~Q)prq}

We analyze the agent’s awareness and knowledge of these events in the tables 4 and 5 below.

12



Agent 1 Agent 2

basic event E E
awareness A (E) = Sipy U Sipgy Ay(E) = o5
knowledge K,(F)=FE Ky (E) = g%

Table 4: “object a is P”

Agent 1 Agent 2
basic event F F
awareness A(F)=% Ay(F)=%
knowledge K\(F) = @% Ky(F)=F

Table 5: “nothing is Q”

3 Comparing the two models

We’ve shown how both an OBU structure (Figure 1) and an HMS structure (Figure 2) can
be used to represent a simple story involving two agents and two propositions. Although
the approaches are clearly different, it is natural to ask whether there are any equivalences
between the two. In this section, we argue that all of the relevant information encoded in
the HMS structure is embedded within the OBU structure, and all of the relevant information
encoded in the OBU structure is embedded within the HMS structure.

Given the very different interpretations of their respective models provided by Board &
Chung [2] and by Heifetz et al. [8], we believe these results add value to both types of model:
in particular, they show that the HMS model can implicitly handle quantified events such as
event F' above (“nothing is Q”); and that the unawareness analyzed by the OBU model, even
though motivated in terms of objects, can be re-interpreted in terms of a proposition-based
approach.

The obvious starting point when comparing the two structures depicted in figures 1 and
2 is to consider the event spaces in each case. Notice that there are 64 distinct events in each
case. For each HMS event there is a corresponding OBU event, and for each OBU event
there is a corresponding HMS event. This is the key to the embedding results. To illustrate
the first half of this claim, consider HMS event E (“object a is P”). This corresponds to
OBU event E. In general, for a given HMS event, the sense of the equivalent OBU event
is determined by the base space of the HMS event, and the reference is determined by the
states in the richest state space of the HMS structure. Of course showing this correspondence

is not sufficient to demonstrate equivalence between the two models. We must also show

13



correspondence is preserved under negation, conjunction, knowledge and awareness. Tables
1 — 4 demonstrate that this is indeed the case for events E and F. We now formalize the
notion of an embedding, and prove our main result.

Let a knowledge-awareness structure (KA structure) consist of

1. a set of events, £

2. a negation operator, = : & — &

3. a conjunction operator, A : & X &€ — &

4. a knowledge operator for each agent i, K; : £ — &
5. an awareness operator for each agent i, A; : £ — &

(With slight abuse of terminology, in what follows we use “OBU structure” (or “HMS
structure”) to refer to the KA structure derived from a particular OBU (or HMS) structure,
as well to refer to the original structure itself.)

Take two KA structures, M' = (&1, =1 AL K1 Al and M! = (€%, -2, A2, K2, A?). We
say that M can be embedded in M? if there is an injective function f : &' — &2 with the

following properties
o J(-'E) = —=*f(E)
o J(ENF)= f(E)A? f(F)
o [(KNE)) = K2f(E)

o [(AI(E)) = ALf(E)

Our main result says that generalized HMS structures can be embedded in OBU struc-

tures and wvice versa.

Theorem 1
(a) Every generalized HMS structure can be embedded in some OBU structure;

(b) Ewvery OBU structure can be embedded in some generalized HMS structure.

The need to consider generalized HMS structures to obtain this embedding result arises
(roughly) because Heifetz et al. [8] impose “partitional” properties on their possibility cor-
respondences (Generalized Reflexivity and Stationarity), while Board & Chung [2] make
no such restrictions. This raises an obvious question: Do the embeddings preserve these
partitional properties? To be more precise, can we embed every HMS structure into an
OBU structure that is partitional in some appropriate sense, and vice versa? To answer this

question, consider the following restrictions on an OBU structure:

14



1. reflexivity: w € Z;(w)

2. stationarity: If w € Z;(w) then Z;(w') = Z;(w)

3. measurability: w' € Z;(w), then A4;(w') = A;(w)

The following proposition now provides a partial answer to our question:
Proposition 4

(a) Every HMS structure can be embedded in some OBU satisfying reflexivity and station-

arity;

(b) Every OBU structure satisfying reflexivity, stationarity and measurability can be embed-

ded in some HMS structure.

The difference between part (a) and the quasi-converse, (b), is the measurability condi-
tion. Example 3 in the appendix shows that, with the embedding defined in the proof of
Theorem 1(a), not every HMS structure can be embedded in an OBU structure satisfying
reflexivity, stationarity and measurability. It is an open question whether measurability can
be preserved with an alternative embedding. We can show that measurability of the OBU
structure is required for part (b) of the Proposition: Example 4 in the appendix provides an
OBU structure that satisfies reflexivity and stationarity but not measurability that cannot
be embedded in an HMS structure with any embedding (of course, by Theorem 1(b), it can

be embedded in some generalized HMS structure).

4 Conclusion

We have attempted to provide a direct comparison between two rather different approaches
to modeling agents’ unawareness: the object-based approach of Board & Chung [2] and the
subjective-state-space approach of Heifetz et al. [8]. Our main result, Theorem 1, shows
HMS structures can be embedded within OBU structures, and vice versa.

We believe that this result helps us understand both models better, adding value to each.
In the case of OBU structures, the embedding result shows that it is valid to interpret the
set of objects as propositions, so that (un)awareness of basic propositions provides the foun-
dations for (un)awareness of more complex propositions, as is the case in most of the other
related literature. On the other hand, we believe there may be some benefit in maintaining
the distinction the objects and the properties they satisfy. Although the OBU structures
described above derive an agent’s unawareness of propositions from her unawareness of the

objects described by those propositions, one can envisage an extension where unawareness of
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properties is also modeled. A property-unawareness function could work (roughly) as follows:
if an agent is unaware of a given property, then she would be unaware of any event containing
one state but not another, where the two states could only be distinguished by whether or
not various objects satisfied that property. Combining such a property-unawareness function
with the object-unawareness function analyzed above would allow us to separate two kinds
of unawareness: and agent could be unaware that “Yao Ming is tall” either because she has
no idea who Yao Ming is or because she does not understand the concept of height.

The embedding results may also allow a re-interpretation of HMS structures. Note that
both OBU structures and HMS structures can be used to provide semantics for formal
languages that can be used to describe what agents know and what they are aware of. Both
sets of authors provide details of how this can be done, along with sound and complete
axiomatizations (Board & Chung [2] and Heifetz et al. [9]). But while Heifetz et al. use
propositional modal logic, Board & Chung use the considerably richer language of first-order
modal logic, allowing us to separate objects from the properties they may or may not satisfy,
and also enabling quantification over those objects. The proof of Theorem 1 (b) above
suggests that HMS structures can be used to capture quantification, and therefore perhaps

also to provide semantics for a first-order logic.

A Appendix

Proof of Proposition 3.
Part 1:

(o) Suppose that E is an event. We need to show that there exists a basis D C S(FE) such
that D! = K;(F). Assume K;(E) is nonempty. Define D = {w € S(E) | II;(w) C E}. By
Confinement and the definition of K;-operator, D = K;(E) N S(E).

We first show that D! C K;(E). Let w € D', w € S for some S = S(F). Then
ws(p) € D. Hence, by definition of D and Confinement, IL;(wgg)) € ENS(E). We claim
that II;(w) C E. Since w € D', w € S for S = S(F) then by Confinement II;(w) C S’ for
some S’ < S. By Projections preserve ignorance, 11! (w) C II! (wg(g)). Hence S" = S(E). By
Projections preserve knowledge, (IL;(w)) gy = lLi(ws(r)). Since ILi(wsm) € ENS(E), we
have (IL;(w)) gz € ENS(E). Hence II;(w) C E. Thus by the definition of the K;-operator,
w e K;(E).

Next, we show that K;(E) C D'. Let w € K;(F). By definition of the Kj;-operator,
II;(w) C E. Let w € §'. By Confinement, there exists space a S < S” such that II;(w) C S.

Since II;(w) € E we must have S = S(E). Since Il;(w) C E, we have (IL;(w))g C

9Halpern & Rego [7] provide two alternative axiomatizations of HMS structures
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ENS(FE). By Projections preserve knowledge, (Hi(w))S(E) = I;(wg(r)). Hence II;(ws(m)) C
ENS(E). Therefore wg(py € D and thus w € DT.

Finally, if K;(E) is empty, then by the definition of the Kj-operator we have K;(F) =
oS(E),

(i), (i) and (v). The proofs of Proposition 2 (i), (ii) and (v) in Heifetz et al. [8] apply

respectively.
Part 2: For convenience, we prove the properties in a different order:

(x) Weak Necessitation: This follows directly from the definition of the awareness and

knowledge operators.

(ix) AU-Introspection: U;(E) = U;U;(E). This is equivalent to A;(E) = A;U;(E). By Weak
Necessitation and the definition of the unawareness operator, A;U;(E) = K;(S(U;(E)")) =
Ki(S(E)) = Ai(E).

(vii) Plausibility with “2”: U;(E) C =K;(F) N —K;—K;(E). This is equivalent to A;(E) D
K;,(E) U K;=K;(E). By definition of the awareness operator, K;(F) C A;(E). By Weak
Necessitation and the definition of the awareness operator, K;—~K;(E) C A(—K;(E)) =
A;(E). Hence the property follows.

(x) Strong Plausibility with “C”: By definition of the awareness operator, K;(F) C A;(E).

By Weak Necessitation and the definition of the awareness operator,
Ki(—K;)"(E) € Ai((-K:)"(E)) = Ai(E)
for any n = 1,.... Hence the property follows.

(xiii), (xiv) and (xvi). The proofs of Proposition 3 (6), (7) and (9) in Heifetz et al. [§]
apply respectively.

(xiv) AK-Self Reflection: A;K;(F) = A;(E). By Weak Necessitation and the definition of
the knowledge operator, A; K;(E) = K;(S(K;(E))") = K;(S(E)") = A;(E).

(xvi) A-Introspection with “C”: K;A;(E) C A;(F). By the definition of the awareness op-
erator, ;A;(E) C A;A;(E) = Ai(E), where the last equality follows from AA-Self reflection.
u

The following example shows that without Stationarity, HMS structures may fail to

satisfy Negative Non-Introspection and Weak Negative Introspection.

17



Example 1 Consider a HMS structure with one space only, S = {wy,wy}. The possibility
correspondence of the single agent is given by I(w,) = {wy} and I(wy) = S. Note that
this specification violates Stationarity. Consider the event E = {w,}. Then K(F) = {w},
-K(F) = {wy}, K-K(FE) = g, -K-K(E) = S, K-K-K(E) =S, -K-K-K(F) = g,
and A-K(E) = S. Thus, ~K(E) N ~K-K(E) = {ws} € “K-K-K(E) = @&, violating
Negative Non-Introspection.

Moreover, - K(E) N A=K (E) = {ws} € K—K(E) = &, violating Weak Negative Intro-

spection.

The next example shows that without Generalized Reflexivity and Stationarity, HMS
structures may fail to satisfy K U-Introspection. (Note that Heifetz et al. [10] show that
KU-Introspection holds without Generalized Reflexivity.)

Example 2 Consider the HMS structure shown in Figure 3. There is a totally ordered set of

TN

w,

SI

Figure 3: The failure of KU-Introspection

two spaces, S and S’'. The possibility correspondence of the single agent is given by the ovals
and arrows. Since wy ¢ I'(wy), it violates Generalized Reflexivity. Moreover, wy € II(wy)
but TI(we) # I(wy). So the possibility correspondence violates Stationarity. Consider the
event E = {w}. We have A(E) = {w1}, U(E) = {wy}, and KU(E) = {w}, violating
KU -introspection.

Proof of Theorem 1. As above, we use the symbols =, A, K;, and A; for OBU-negation,
conjunction, knowledge and awareness; for the sake of clarity, we adopt the new symbols ~
and A for HMS-negation and conjunction, but continue to use K; and A; for HMS-knowledge

and awareness.

18



(a) We prove this direction of the embedding result result for a special class of generalized
HMS structures (every example provided in Heifetz et al. [8] fits in this class). The extension
to the class of all generalized HMS structures follows immediately from Lemma 1 below.
Say that a generalized HMS structure is standard if there is some set ® and a labeling
of the state spaces {Sa},ce such that S, < Sg if and only if o C f3.
From a standard gene;alized HMS model, construct an OBU model as follows:

o W =255

0=29¢

Z; (w) = II! (w) N Sy (effectively, this projects the states the agent considers possible
back to the richest state space, Sg)

A; (w) = «, where o C & satisfies II; (w) C S, (note that by the HMS Confinement

condition, this « is unique).

For any HMS-event E with base space S,, we define f(E) = (E N S, ). To see that
f is injective, note that two HMS-events E and F' can differ only they have different bases;
thus either (i) they have different base spaces, or (ii) their bases are different subsets of the
same base space S. In the first case, the senses of f(F) and f(F) must differ, and in the
second case their references must differ.

Next, let £ be an HMS-event, with base space S, and basis B, and I’ be an HMS-event
with base space Sy and basis C' (we ignore the cases where B = @ or C' = &, which are
straightforward). Then:

Negation: f(~ E) = f ((Sa\ B)!) = (Ss \ E,o) = = (E N Sp, ) = ~f (E)

Conjunction: f(EAF)=f(ENF)=(ENFNSe,aUp)=(ENSs,a)\N(FNSs,3) =
FE)Nf(F)

Knowledge:
J(Ki(B) = f({w e X | 1Li(w) € E})

f(D") for some D C S, (by property (o) on page 10, since S, = S(F))
= (X,q), where X = D' N Sg.

Take any w € X. Then (i) II;(w) C E. The HMS Confinement conditions requires
that II;(w) C S, for some v € ®, and II;(w) C E implies that a C . Since A;(w) =~
by construction, we have @ C A;(w); and (i) Z;(w) = IIl (w) N S € E N Sy, since
II(w) C E.
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Next, for any w € Sg, suppose Z;(w) C ENSe and o C A;(w). Then Hzqu) C ENSy
and I1;(w) C S, for some v 2 «; hence, II;(w) C E, and so w € D' N Sg = X. Thus,

X={we S |Zi(w) CENSp and a C A;(w)},

and so f(K;(F)) = (X,a) = K;f(E), as required.

Awareness: Note that by the definition of the awareness operator, we have by (x) Weak
Necessitation, A;(E) = K;(S(E)!") for any event E. So it follows from property (o)
of the knowledge operator that A;(E) has base space S, = S(F). Thus f(A;(F)) =
(X, ), where X = A;(E)NSp. Again by (x) Weak Necessitation and the proof of the
knowledge part it follows that

X = {U) S Sq>|IZ Q Sl N Sq) and o Q Az(w)}
= {w e Spla C A;(w)}

and so f(A;(E)) = (X,a) = A;f(F) as required.

(b) For the other direction, start with an OBU structure (W, 0,{Z;},{A;}) and define a
generalized HMS structure < ({Sa}a@ , >_-) , (rg) (Hz)> as follows:

B’

e & = 20 Define a partial order on ® by set inclusion, i.e. a > 3 if and only if a D .

Since the set of all subsets is a complete lattice, so is ®.

e S5, =W forall « € . That is, each space S, is a copy of W. Rename copies of w € W
in S, by w,. Spaces are disjoint. The order ® can be extended to an order on the

spaces. Hence, S = {Sa},cq is @ complete lattice.

e Projections are defined in the obvious way by for a = 3, a, 3 € @, r§(wa) = wg. It is
straightforward to verify that indeed projections are surjective, commute and are the

identity when domain and codomain coincide.

e Forw € S,,
IL(w) =7, (rianf{a,Ai(w)}(w» .

Note that inf{a, A;(w)} is well defined since ® is a complete lattice. Confinement
follows by construction. Projections Preserve Ignorance follows with equality from the
construction. Projections Preserve Knowledge follows by construction. Projections

Preserve Awareness follows from previous properties (see Remark 3 in Heifetz et al.

8])-
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Thus we have shown that this construction indeed defines a generalized HMS structure.

Next, define an embedding by for any OBU event (B, «) € Eopy, set
9(B,a) = (B!, S,)

where B is the basis and S, the base space of the corresponding event in the generalized
HMS structure. First, note that ¢ is injective, since OBU events differ if and only if their

references (bases) are different or their senses (base spaces) are different. Then:
Negation: g(—(B,a)) =g(W\ B,a) = ((Sa \ B)!, S4) = (~ B',S,) = ~ g(B, a)

Conjunction: g((Bj,a1) A (Ba,a2)) = g(By N By, U ag) = (BI N B;,Ssup{alm}) =
(BLOQ) A (B;OQ) = g(B1,a1) A g(By, as)

Knowledge:

g(Ki(B,a)) = g(({w | o € Ai(w)}, @) A ({w | Zi(w) C B}, )
g(({w | € Ai(w)}, ) A g(({w | Zi(w) C B}, a))
= ({we Sy | aC A(w)t, So) A ({w € S, | Z;(w) € B}, S,)
=({wesS,|aCAw} n{wes,|Lw) C B},S,)
= ({w € S, | Wi(w) € B}, S,)
= ({w € 2| IL(w) C (B",5.)}, Sa)

( z(B ’Sa)vsa)
= K;(B',S,)
Ki(g(B,a))
Awareness:
9(Ai(B,a)) = g{w | @ C Ai(w)}, @)
= ({w € Sa | a C A(w)}!, Sa)
=({w e S, | I;(w) C Sa}T,Sa)
= ({w e T | M(w) C SL},5.)
= (Ai(B', 54), Sa)
Al(B Sea)
= Ai(9(B,a))
[ |
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Proof of Proposition 4.

(a) We use the same embedding as in the proof of Theorem 1(a). It remains to show that if
the generalized HMS structure satisfies Generalized Reflexivity and Stationarity (i.e. if we
started with an HMS structure), then the OBU structure thus defined satisfies reflexivity

and stationarity.

Generalized Reflexivity of II; implies reflexivity of Z;. Suppose w € HI (w), with
II;(w) € S. Consider two cases: Case (i) S = Sp. Then by Confinement w €
I/ (w) N Sp = IL;(w). Thus w € Z;(w) as required. Case (ii) S < Sp. Let w € 5.
By Confinement Sy = S’ = S. Consider any w' € (rof) ! (w). Note that w' € I (w)
and wy, = w. By Projections Preserve Ignorance, II! (w') C II}(w). Hence, by Con-
finement II;(w’) C S” for some S” = S. Note that wy = wg. Hence by Projections
preserve knowledge (IL;(w))s = (II;(w'))s. Thus w' € Il (w') N S and we conclude
that w’ € Z;(w'), as required.

Stationarity of II; implies stationarity of Z;,. Suppose v’ € II;(w) with II;(w) C S. By
Stationarity, II;(w’) = IL;(w). Let w € S*. By Confinement, S* > S. Consider
any w” € (rg®)"'(w’) and w” € (r3?)~'(w). Note that w” € I!(w) and w¥ = w’
and w% = wg. By Projections Preserve Ignorance, II! (w”) C II! (v') and II! (w”) C
I/ (w). Hence, by Confinement IT;(w”) C S and IIL;(w”) € S” for some S” = S
and S” = S* = S. By Projections Preserve Knowledge, (IT;(w”))s = IL;(w’) and
(IL;(w"))s = ;(wg) = I;(w). Note that w” € II!(w”) N Sp. Moreover, since we
previously observed that IT;(w') = II;(w) by Stationarity, we must have IT] (w”) N Sp =
1T/ (w") N Sg. Therefore for w” € Z;(w") we have Z;(w”) = Z;(w"), as required.

(b) We use the same embedding as in the proof of Theorem 1(b). It remains to show that if
the OBU structure satisfies reflexivity, stationarity and measurability, then the embedding
defines an HMS structure.

Recall that for w € S,

IL(w) = Zi (Mo, (W) -

Note that if the OBU structure satisfies measurability, then Generalized Reflexivity and

Stationarity follow from reflexivity and stationarity of Z; respectively. m

The following example shows that with the embedding considered in the proofs of Theo-
rem 1(a) and Proposition 4(a), not every HMS structure can be embedded into some OBU

structure satisfying reflexivity, stationarity and measurability.
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ab —a-b —ab a-b

Figure 4: The failure of measurability

Sg

Example 3 Consider the HMS structure for one agent given in Figure 4. The possibility
correspondence is given by the ovals and arrows on a lattice of four spaces. Notice that this
is an HMS structure: In particular, Generalized Reflexivity and Stationarity are satisfied.

According to the embedding defined in Theorem 1(a), we have

Z(ab) = {a,~a}' N Sup= Sap
Z(-ab) = {b,=b}' NS,y = S.s

and

A(ab) = {a}
A(-ab) = {b}

So we have (—ab) € Z(ab) but A(ab) # A(—ab). The measurability condition is not
satisfied (though the OBU structure is reflexive and stationary).

Example 4 shows that measurability is required for Proposition 4(b), i.e. that not every
OBU structure satisfying reflexivity, stationarity but not measurability can be embedded

into an HMS structure.

Example 4 Consider the following OBU structure for one agent: W = {wy,wo}, O =
{a,b}, Z(wy) = Z(wy) = {wy,wo}, A(w;) = {a,b}, and A(wy) = {a}. Note that this OBU
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structure satisfies both reflexivity and stationarity but does not satisfy measurability. Let
event E = (W,0). Then A(E) = (wy,0), while K(A(E)) = (@,0). Suppose this OBU
structure can be embedded into some HMS structure, with embedding function f. Since f is
injective, we have f(A(E)) # f(K(A(E))), and hence A(f(E)) # K(A(f(E))). This violates

A-Introspection, yielding a contradiction.

To extend the proof of Theorem 1(a) to the class of all generalized HMS structures,
it suffices to show that every generalized HMS structure can be embedded in a standard

generalized HMS structure.

Lemma 1 FEvery generalized HMS structure can be embedded in a standard generalized HMS

structure.

Proof. Before we start, we develop an alternative representation of generalized HMS struc-
tures that is more convenient for our purposes.

Fix an arbitrary generalized HMS structure (S, <, r,II;), where S = {S,},4 is a com-
plete lattice of disjoint state spaces. Let Sz and S, be the maximal and minimal state spaces,

respectively. Let X = Sz. For any «, define a class of subsets of X as follows:
Po={(r) H(wy) | wa € Su}.

We use P, to denote a generic element of P,. Since r is surjective, P, is a partition of X.
Moreover, there is a one-to-one correspondence between P, and S,. Let f : Uy,Sq — UaPa
denote this one-to-one correspondence. The advantage of working with the P,’s rather than
the S,’s is that we can take joins and meets of partitions and create new partitions.

There are a few properties of this one-to-one correspondence that are worth pointing
out. First, if S, < S, then P, is a weakly coarser partition of X than P,. Moreover,
for any w € S, and w' € Sy, r¥ (w') = w if and only if f(w’) C f(w). Third, for any a,
Po = V{Pus | & = a}, where \/ is the join operator on partitions.

Now, let’s embed this arbitrary generalized HMS structure into a standard generalized
HMS structure. Recall that an generalized HMS structure is standard if there is some set ®
and a labeling of the state spaces {S’g}ﬁgq) such that Sz < Sy if and only if 5 C (. Recall
that A is the index set in the original HMS structure, and S, is the minimal state space.
Let ® := A\ {a}. Define a mapping g : A — 2% as follows: g(a):={a’ € ®| o’ < a}. Let
B = g(A). Note that g is a one-to-one correspondence between A and B. Also note that,
since g(a) = @ and g(a) = ¢, we have &, ® € B.

We now construct a class, {Ps}sce, of partitions of X. For any § C @, define

Py = \/{Pa | g(a) 2 5}.
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This construction has the following nice property: for any # and 3’ such that 3 C 3, we
have {P, | g(a) 2 B} C {Pa. | g(o) 2 B}, and hence Py is a weakly coarser partition of
X than Pg. Moreover, For any o and 3 such that § = g(a), we have Pz = P,. So there
is a one-to-one correspondence between UyeaP, and UgepPs. Let’s abuse notation and use
g to denote this one-to-one correspondence as well. Note that g preserves both order and
projections.

We use these Pp’s as the state spaces in our standard generalized HMS structure. The
partial ordering of these state spaces is the natural one, and so is the projection. It remains
to define the possibility correspondences, IAL, in the standard generalized HMS structure. For
any 3 € B, and any P € P, the construction is straightforward: simply define fIZ-(Pg) =
g(f(IL(f (g7 (Pp))))). For any other Ps’s, the specification of II; can be arbitrary. For
example, we can simply define II;(Pg) := {Ps}.

That this standard generalized HMS structure embeds the original generalized HMS

structure is obvious. ®m
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