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1 Introduction

Over the past twenty years or so, a small but growing literature has emerged with the aim

of modeling agents who are unaware of certain things. Early examples include Fagin and

Halpern [4] and Modica and Rustichini [11]. More recently, a number of authors have begun

to examine the implications of unawareness in economic theory (see e.g. Chung & Fortnow

[3], Tirole [12], and Filiz-Ozbay [5]). In this paper we compare two different approaches to

modeling unawareness: the object-based approach of Board & Chung [2] and the subjective-

state-space approach of Heifetz et al. [8]. In particular, we show that subjective-state-

space models (henceforth HMS structures) can be embedded within object-based models

(henceforth OBU structures), demonstrating that the latter are at least as expressive. As

long as certain restrictions are imposed on the form of the OBU structure, the embedding

can also go the other way. A generalization of HMS structures (relaxing the partitional

properties of knowledge) gives us a full converse. Given the rather different interpretations of

each approach offered by their respective authors, we believe that these results may enhance

our understanding of each.

∗We thank Eddie Dekel, Joe Halpern, Aviad Heifetz, and Ming Li for helpful discussions. Burkhard
gratefully acknowledges financial support from the NSF SES-0647811.
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2 Two models of unawareness

In what follows, we provide a brief presentation of OBU structures and HMS structures.

More details, along with proofs of results can be found in Board & Chung [2] and Heifetz et

al. [8, 9].

2.1 The object-based approach (Board & Chung [2])

An OBU structure is a tuple 〈W,O, {Ii}, {Ai}〉, where:

• W is a set of states;

• O is a set of objects;

• Ii : W→ 2W is an information function for agent i; and

• Ai : W→ 2O is an awareness function for agent i.

Intuitively, Ii(w) indicates the states that agent i considers possible when the true state

is w, while Ai(w) indicates the objects she is aware of.1

In the standard information partition model familiar to economists, events are subsets of

the state space, corresponding (roughly) to the set of states in which some given proposition

is true. In our model, an event is an ordered pair (R, S), where R ⊆ W is a set of states and

S ⊆ O is a set of objects; we call R the reference of the event, corresponding (as before) to

the set of states in which some proposition is true; and S is the sense of the event, listing

the set of objects referred to in the description of the proposition. (To give an example,

the events representing the propositions “the dog barked” and “the dog barked and the cat

either did or did not meow” have the same reference but difference senses.) We sometimes

abuse notation and write (R, a) instead of (R, {a}), and (w, S) instead of ({w}, S). We use E
to denote the set of all events, with generic element E.

We now define two operators on events, corresponding to “not” and “and”.

¬(R, S) = (W \ R, S)

∧j(Rj, Sj) = (∩jRj,∪jSj).

1In Board & Chung [2] OBU structures also include a subset Ow of O for each state w ∈W. The scope of
quantifiers at a given state w includes only the objects in Ow (the real objects), rather than all of the objects
in O. Allowing the Ow sets to vary across states enables us to captures agents’ uncertainty about whether
they are aware of everything or not, e.g. “Peter is not sure whether he is aware of everything”. The reader
who is familiar with Board & Chung [2] can treat the OBU structures in this paper as special cases where
Ow = O for all w.
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The negation of an event holds at precisely those states at which the event does not hold,

but it refers to the same set of objects. The conjunction of several events holds only at those

states at which all of those events hold, and it refers to each set of objects. It will often be

convenient to use disjunction “or” as well, defined in terms of negation and conjunction as

follows:

∨j(Rj, Sj) = ¬(∧j¬(Rj, Sj))

= (∪jRj,∪jSj).

We also introduce three modal operators for each agent, representing awareness, implicit

knowledge, and explicit knowledge:

Ai(R, S) = ({w | S ⊆ Ai(w)}, S) (awareness) (1)

Li(R, S) = ({w | Ii(w) ⊆ R}, S) (implicit knowledge) (2)

Ki(R, S) = Ai(R, S) ∧ Li(R, S) (explicit knowledge) (3)

Intuitively, an agent is aware of an event at w if she is aware of every object in the sense of

the event; and the agent implicitly knows an event at state w if the reference of the event

includes every state she considers possible. However, implicit knowledge is not the same as

explicit knowledge, and the latter is our ultimate concern. Implicit knowledge is merely a

benchmark that serves as an intermediate step to modeling what an agent actually knows.

Intuitively, an agent does not actually (i.e., explicitly) know an event unless he is aware of

the event and he implicitly knows the event. Notice that Ai, Li, and Ki do not change the

set of objects being referred to.

It is easy to verify that awareness and (implicit) knowledge satisfy the following properties

(where we suppress the agent-subscripts):

A1 ∧jA(R, Sj) = A(R,∪jSj)

A2 A(R,X) = A(R′,X) for all R,R′

A3 A(R,∅) = (W,∅)

A4 A(R,X) = (R′,X) for some R′

L1 L(W,O) = (W,O)

L2 ∧jL(Rj, S) = L(∩jRj, S)

L3 L(R, S) = (R′, S) for some R′
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L4 if L(R, S) = (R′, S) then L(R, S′) = (R′, S′)

In Board & Chung [2] we show that the converse is also true: any awareness/knowledge

operator satisfying these properties can be derived from some awareness/information func-

tion. Thus A1–A4 and L1–L4 provide a precise characterization of awareness and (implicit)

knowledge, respectively.

Proposition 1 Suppose that Ai is defined as in (1). Then:

1. Ai satisfies A1–A4; and

2. if A′i is an operator on events which satisfies A1–A4, we can find an awareness function

Ai such that A′i and Ai coincide.

Proposition 2 Suppose that Li is defined as in (2). Then:

1. Li satisfies L1–L4; and

2. if L′i is an operator on events which satisfies L1–L4, we can find an information func-

tion Ii such that L′i and Li coincide.

Aside: a formal language

For the sake of transparency, and to aid interpretation, we now show how OBU structures

can be used to provide truth conditions for a formal language, a version of first-order modal

logic.2 We start with a set of (unary) predicates, P,Q,R, . . ., and an (infinite) set of variables,

x, y, z, . . .. Together with set of objects, O, this generates a set Φ of atomic formulas,

P (a), P (x), Q(a), Q(x), . . ., where each predicate takes as its argument a single object or

variable. Let F be the smallest set of formulas that satisfies the following conditions:

• if φ ∈ Φ, then φ ∈ F ;

• if φ, ψ ∈ F , then ¬φ ∈ F and φ ∧ ψ ∈ F ;

• if φ ∈ F and x ∈ X, then ∀xφ ∈ F ;

• if φ ∈ F , then Liφ ∈ F and Aiα ∈ F and Kiα ∈ F for each agent i.

2In Board & Chung [1], we offer a sound and complete axiomatization of this language.
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Formulas should be read in the obvious way; for instance, ∀xAiP (x) is to be read as “for

every x, agent i is aware that x possesses property P .” Notice, however, that it is hard to

make sense of certain formulas: consider P (x) as opposed to P (a) or ∀xP (x). Although it

may be reasonable to claim that a specific object, a, is P , or that every x is P , the claim

that x is P seems empty unless we specify which object variable x stands for. In general,

we say that a variable x is free in a formula if it does fall under the scope of a quantifier

∀x, and define our language L to be the set of all formulas containing no free variables.3 We

use OBU structures to provide truth conditions only for formulas in L, and not for formulas

such as P (x) that contain free variables.

Take an OBU structure M = 〈W,O, {Ii}, {Ai}〉, and augment it with an assignment

π(w)(P ) ⊆ O of objects to every predicate at every state (intuitively, π(w)(P ) is the set of

objects that satisfy predicate P ). If a formula φ ∈ L is true at state w of OBU structure M

under assignment π, we write (M,w, π) � P (a); � is defined inductively as follows:

(M,w, π) � P (a) iff a ∈ π(w)(P );

(M,w, π) � ¬φ iff (M,w, π) 6|= φ;

(M,w, π) � φ ∧ ψ iff (M,w, π) � φ and (M,w, π) � ψ;

(M,w, π) � ∀xφ iff (M,w, π) � φ[a\x] for every a ∈ O (where φ[a\x] is φ with all free

occurrences of x replaced with a);4

(M,w, π) � Aiφ iff a ∈ Ai(w) for every object a in φ;

(M,w, π) � Liφ iff (M,w′, π) � φ for all w′ ∈ Ii(w);

(M,w, π) � Kiφ iff (M,w, π) � Aiφ and (M,w, π) � Liφ.

Notice that there is a close connection between sentences of L and OBU events: for any

given φ ∈ L, the reference of the corresponding OBU event is given by the set of states at

which φ is true, while the sense is simply the set of objects in φ

3More formally, we define inductively what it is for a variable to be free in φ ∈ F :

• if φ is an atomic formula of the form P (x) where x is a variable, then x is free in φ;

• x is free in ¬φ, Kiφ, Aiφ, and Liφ iff x is free in φ;

• x is free in φ ∧ ψ iff x is free in φ or ψ;

• x is free in ∀yφ iff x is free in φ and x is different from y.

4In Board & Chung [2], OBU structures also specify a subset Ow of O for every w ∈ W. In this more
general case, we define (M,w, π) � ∀xφ iff (M,w, π) � φ[a\x] for every a ∈ Ow.
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To help understand how OBU structures work, consider the following simple example.

There are two agents, 1 and 2, and two objects, a and b. There are two issues which are of

(potential) interest to our agents: whether or not object a is P , and whether or not object

b is Q (to borrow a famous example, our agents might be interested in whether or not a

dog barks, and whether or not a cat meows). Assume that Agent 1 is aware of object a and

knows whether it is P or not, but agent 2 is not and does not. On the other hand, agent 2

is aware of object b and whether it is Q or not, while agent 1 is not and does not.

One OBU structure that could be used to reason about this situation is shown in Figure

1 below. There are two objects, O = {a, b}, and four states, W = {PQ,P¬Q,¬PQ,¬P¬Q},
where e.g. state ¬PQ can be thought of as corresponding to the situation where a is not P

but b is Q.5 Agent 1’s (partitional) information function is given by I1(PQ) = I1(P¬Q) =

{PQ,P¬Q} and I1(¬PQ) = I1(¬P¬Q) = {¬PQ,¬P¬Q}, and is described by the dashed

blue rectangles in Figure 1. Her awareness function is given A1(w) = {a} for all w ∈ W,

and is described by the dashed blue arrows. Similarly, agent 2’s information function and

awareness function are described by the solid red arrows.

Figure 1: An OBU structure

Recall that in an OBU structure, an event is an ordered pair (R, S), where R ⊆ 2W

and S ⊆ 2O. In this example, then, there are 24 × 22 = 64 distinct OBU events. For

many of these, the interpretation is clear: for instance, the event
(
{PQ,P¬Q}, a}

)
can be

interpreted as “object a is P”. But what about the event
(
{P¬Q,¬P¬Q},∅

)
? This event

holds when and only when object b is not Q, and yet neither of the objects, in particular not

object b, are used to describe it. A natural translation of this event into English would be

“nothing is Q” (indeed, with reference to language described above, the formula ∀x¬P (x)

5For our current purposes, the labeling of the states serves merely to suggest a possible interpretation
to the reader and to aid comprehension. This interpretation could be formalized as described above, by
augmenting the OBU structure with an assignment. In Board & Chung [2] we show how to model properties
of objects explicitly as mappings from objects to states, without reference to a formal language
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would be true in precisely states P¬Q and ¬P¬Q according to the obvious assignment). In

the current example, agent 1 does not know this event (implicitly or explicitly) in any of

the states, although she does consider it possible—even though she is unaware of object

b. Intuitively, she doesn’t rule out the possibility that something is Q, even though she

can’t imagine what. When the true state is PQ, for example, this is captured by the fact

that she considers both states PQ and P¬Q to be possible. Note that is a modeling choice.

We could have made different ones: In particular, we could have assumed that if an agent

is not aware of anything which possesses a particular property, then that agent believes

that nothing is Q; this would generate for agent 1 the (irreflexive) information function

I1(PQ) = I1(P¬Q) = {P¬Q}. Alternatively, we could have assumed that if an agent is

not aware of anything which possesses a particular property, then that agent believes that

for sure something possesses that property; this would generate for agent 1 the (irreflexive)

information function I1(PQ) = I1(P¬Q) = {PQ}. Without a specific context in mind, none

of these three modeling choices seems to us more appropriate than the others.

Tables 1 and 2 below describe the agents’ awareness and knowledge of these two events,

which we label E and F respectively.

Agent 1 Agent 2

basic event E =
(
{PQ,P¬Q}, a

)
E =

(
{PQ,P¬Q}, a

)
awareness A1(E) =

(
W, a

)
A2(E) =

(
∅, a

)
implicit knowledge L1(E) =

(
{PQ,P¬Q}, a

)
L2(E) =

(
∅, a

)
explicit knowledge K1(E) =

(
{PQ,P¬Q}, a

)
K2(E) =

(
∅, a

)
Table 1: “object a is P”

Agent 1 Agent 2

basic event F =
(
{P¬Q,¬P¬Q},∅

)
F =

(
{P¬Q,¬P¬Q},∅

)
awareness A1(F) =

(
W,∅

)
A2(F) =

(
W,∅

)
implicit knowledge L1(F) =

(
∅,∅

)
L2(F) =

(
P¬Q,¬P¬Q,∅

)
explicit knowledge K1(F) =

(
∅,∅

)
K2(F) =

(
P¬Q,¬P¬Q,∅

)
Table 2: “nothing is Q”
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2.2 The subjective-state-space approach (Heifetz et al. [8, 9])

An HMS structure6 is a tuple 〈S,�, r,Πi〉. The first three components describe the event

space. First, S = {Sα}α∈A is a complete lattice of disjoint state spaces, partially ordered by

�. The intended interpretation of the ordering is that if S � S ′, then S is less expressive

than S ′. Σ =
⋃
α∈A Sα is used to denote the set of all states.

Next, r =
{
rS
′

S

}
S,S′∈S with S�S′ is a set of surjective projections from each state space

to every space that is (weakly) less expressive: if w ∈ S ′, then rS
′

S (w) is the restriction of

the description of w to the more limited vocabulary of S. These functions are required to

commute (so that if S � S ′ � S ′′, then rS
′′

S = rS
′

S ◦ rS
′′

S′ ), and rSS is the identity function. The

following notation will prove useful. Suppose S � S ′: then if w ∈ S ′, let wS = rS
′

S (w); and

if B ⊆ S ′, let BS = {wS | w ∈ B}.
For B ⊆ S, denote by B↑ =

⋃
{S′|S�S′}

(
rS
′

S

)−1
(B) the extension of B to all more expres-

sive vocabularies. Then E ⊆ Σ is an HMS event if it is of the form B↑ for some B ⊆ S and

some S ∈ S. B is called the basis of E, and S = S (E) the base-space.

If B↑ is an HMS event with basis B ⊆ S, its negation ¬B↑ is defined by (S \B)↑. To

handle the case where B = S, Heifetz et al. [8] introduce a distinct event ∅S (“a logical

contradiction phrased with the expressive power available in S”) for each S ∈ S, and define

¬S↑ = ∅S and ¬∅S = S↑.

The conjunction of a set of events
{
B↑λ

}
is simply the intersection:

∧
λ

B↑λ =
⋂
λ

B↑λ,

while disjunction is defined from conjunction in the usual way:

∨
λ

B↑λ = ¬

(∧
λ

¬B↑λ

)

(note that the disjunction of a set of events is not equal to their union, except in the special

case where they all have the same base-space).

The Πi functions are designed to capture the agents’ knowledge and awareness. Agent

i’s possibility correspondence Πi : Σ→ 2Σ \∅ is assumed to satisfy the following properties:

(0) If w ∈ S then Πi(w) ⊆ S ′ for some S ′ � S. Confinement

(1) w ∈ Π↑i (w) for every w ∈ Σ. Generalized Reflexivity

(2) w′ ∈ Πi(w) implies Πi(w
′) = Πi(w) Stationarity

6We follow the original notation and presentation as closely as possible in this section.
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(3) If w ∈ S ′, w ∈ Πi(w) and S � S ′ then wS ∈ Πi(wS) Projections Preserve Awareness

(4) If w ∈ S ′ and S � S ′ then Π↑i (w) ⊆ Π↑i (wS) Projections Preserve Ignorance

(5) If S � S ′ � S ′′, w ∈ S ′′ and Πi(w) ⊆ S ′ then Projections Preserve Knowledge

(Πi(w))S = Πi(wS)

Generalized reflexivity and stationarity are the analogues of the partitional properties

of possibility correspondences in partitional information structures. Note, however, that Πi

does not necessarily partition the state space Σ. In particular, there could be states in some

space at which the possibility set of agent i is in a different space. Nevertheless, all of the

properties of knowledge associated with partitional possibility correspondences in standard

state-space models are satisfied (see below). We also consider the case where only properties

(0), (3), (4), and (5) are imposed, and refer to this larger class of models as generalized HMS

structures.7

The knowledge operator can now be defined.

Ki(E) = {w ∈ Σ | Πi(w) ⊆ E}

if there is a state w such that Πi(w) ⊆ E, or

Ki(E) = ∅S(E)

otherwise.

Awareness is defined by:8

Ai(E) = {w ∈ Σ | Πi(w) ⊆ S(E)↑}

if there is such a state w such that Πi(w) ⊆ S(E)↑, or

Ai(E) = ∅S(E)

otherwise.

Heifetz et al. [8] show that in HMS structures, the knowledge operator satisfies the

following properties:

7Halpern & Rego [7] also consider such a generalization. Heifetz et al. [10] introduce unawareness
structures with probabilistic beliefs that are not required to satisfy generalized reflexivity.

8Note that Heifetz et al. [8] use a different definition of unawareness: Ai(E) = Ki(E)∪Ki(¬Ki(E)) (this
definition was first adopted by Modica & Rustichini [11]). Although the two definitions coincide in HMS
structures (see Halpern & Rego [7] or Heifetz et al. [9], Remark 6), the Modica & Rustichini definition is
not appropriate for the case of generalized HMS structures.
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(o) If E is an event, then Ki(E) is an S(E)-based event

(i) Ki(Σ) = Σ Necessitation

(ii) Ki

(⋂
λ∈LEλ

)
=
⋂
λ∈LKi(Eλ) Conjunction

(iii) Ki(E) ⊆ E Truth

(iv) Ki(E) ⊆ KiKi(E) Positive Introspection

(v) E ⊆ F implies Ki(E) ⊆ Ki(F ) Monotonicity

(vi) ¬Ki(E) ∩ ¬Ki¬Ki(E) ⊆ ¬Ki¬Ki¬Ki(E) Negative Non-Introspection

And Heifetz et al. [8, 9] show that in HMS structures the following properties hold for

awareness and knowledge-awareness interaction. Letting Ui(E) abbreviate ¬Ai(E):

(vii) Ai(E) = Ki(E) ∪Ki(¬Ki(E)) Plausibility

(viii) KiUi(E) = ∅S(E) KU Introspection

(ix) Ui(E) = UiUi(E) AU Introspection

(x) Ai(E) = Ki(S(E)↑) Weak Necessitation

(xi) Ui(E) =
⋂∞
n=1(¬Ki)

n(E) Strong Plausibility

(xii) ¬Ki(E) ∩ Ai¬Ki(E) = Ki¬Ki(E) Weak Negative Introspection

(xiii) Ai(¬E) = Ai(E) Symmetry

(xiv)
⋂
λ∈LAi(Eλ) = Ai

(⋂
λ∈LEλ

)
A-Conjunction

(xv) AiKi(E) = Ai(E) AK-Self Reflection

(xvi) AiAi(E) = Ai(E) AA-Self Reflection

(xvii) KiAi(E) = Ai(E) A-Introspection

For generalized HMS structures, however, some of these properties may not hold.

Proposition 3 Consider a generalized HMS structure:

1. The knowledge operator Ki satisfies property (o), Necessitation, Conjunction, and

Monotonicity.
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2. The awareness and knowledge operators, Ai and Ki, satisfy Plausibility with “⊇′′,
AU Introspection, Weak Necessitation, Strong Plausibility with “⊆”, Symmetry, A-

Conjunction, AK-Self Reflection, AA-Self Reflection, and A-Introspection with “⊆”.

In the appendix, we show that Negative Non-Introspection and Weak Negative Introspec-

tion may fail when Stationarity is violated (Example 1), and that KU -Introspection may

fail when both Generalized Reflexivity and Stationarity are violated (Example 2).

To illustrate the mechanics of HMS structures, consider the example from the previous

subsection. Recall that agent 1 is aware of object a, and knows whether or not it is P , while

agent 2 is aware of object b, and knows whether or not it is Q. An HMS structure describing

this situation shown in Figure 2 below.

¬

¬ ¬ ¬

¬ ¬¬

¬

¬ ¬¬

¬

¬ ¬

¬

¬

Figure 2: Example of an HMS structure

The four state spaces S =
{
S{P,Q}, S{P}, S{Q}, S∅

}
(using the obvious notation) are in-

dicated by solid black rectangles. The states are labeled according to whether or not a is

P and b is Q, and according to the expressiveness of the vocabulary. For example, at state

(¬PQ)Q ∈ S{Q}, object a is not P , but object b is Q, and the vocabulary of that state space is

rich enough only to talk about whether or not object b is Q; and at state (PQ)∅ ∈ S∅, a is P

and b is Q, although the vocabulary of that state space is not rich enough to talk about either
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of these properties. The r projection functions have been omitted to avoid clutter, but can be

figured out from the descriptions of the states, so for example r
S{P,Q}
S{P}

(P¬Q)P,Q = (P¬Q)P ,

r
S{P,Q}
S{Q}

(P¬Q)P,Q = (P¬Q)Q, and r
S{P,Q}
S∅

(P¬Q)P,Q = (P¬Q)∅.

The possibility correspondences for each agent are described by the colored arrows and

ovals, dashed blue for agent 1 and solid red for agent 2. For a given state w, if w is in an

oval, then Πi(w) is given by all of the states in that oval; otherwise, if Πi(w) is given by the

the states at which the arrow from w points. For example, Π1((PQ)P,Q) = Π1((PQ)P ) =

{(PQ)P , (P¬Q)P}, while Π1((PQ)Q) = Π1((PQ)∅) = {(PQ)∅, (P¬Q)∅}.
Recall that in an HMS structure, an event is a subset of some base space, along with all

the states in more expressive state spaces that project onto a state in this subset. Thus in

the HMS structure above, there are 64 distinct events (see Table 3 below).

Base space

S{P,Q} S{P} S{Q} S∅

∅S{P,Q} ∅S{P} ∅S{Q} ∅S∅

{(PQ)P,Q} {(PQ)P , (PQ)P,Q} {(PQ)Q, (PQ)P,Q}
...

{(P¬Q)P,Q} {(P¬Q)P , (P¬Q)P,Q} {(P¬Q)Q, (P¬Q)P,Q}
{(¬PQ)P,Q}

...
...

{(¬P¬Q)P,Q}
{(PQ)P,Q, (P¬Q)P,Q}

...

Σ

Table 3: HMS events

In section 2.1 above, we considered an OBU event E corresponding to the sentence “object

a is P”, and an OBU event F corresponding to the sentence “nothing is Q”. In the HMS

structure just described, the equivalent events would be

E = {(PQ)P , (P¬Q)P , (PQ)P,Q, (P¬Q)P,Q}, and

F = {(P¬Q)∅, (¬P¬Q)∅, (P¬Q)P , (¬P¬Q)P , (P¬Q)Q, (¬P¬Q)Q, (P¬Q)P,Q, (¬P¬Q)P,Q}

We analyze the agent’s awareness and knowledge of these events in the tables 4 and 5 below.

12



Agent 1 Agent 2

basic event E E

awareness A1(E) = S{P} ∪ S{P,Q} A2(E) = ∅S{P}

knowledge K1(E) = E K2(E) = ∅S{P}

Table 4: “object a is P”

Agent 1 Agent 2

basic event F F

awareness A1(F ) = Σ A2(F ) = Σ

knowledge K1(F ) = ∅S∅ K2(F ) = F

Table 5: “nothing is Q”

3 Comparing the two models

We’ve shown how both an OBU structure (Figure 1) and an HMS structure (Figure 2) can

be used to represent a simple story involving two agents and two propositions. Although

the approaches are clearly different, it is natural to ask whether there are any equivalences

between the two. In this section, we argue that all of the relevant information encoded in

the HMS structure is embedded within the OBU structure, and all of the relevant information

encoded in the OBU structure is embedded within the HMS structure.

Given the very different interpretations of their respective models provided by Board &

Chung [2] and by Heifetz et al. [8], we believe these results add value to both types of model:

in particular, they show that the HMS model can implicitly handle quantified events such as

event F above (“nothing is Q”); and that the unawareness analyzed by the OBU model, even

though motivated in terms of objects, can be re-interpreted in terms of a proposition-based

approach.

The obvious starting point when comparing the two structures depicted in figures 1 and

2 is to consider the event spaces in each case. Notice that there are 64 distinct events in each

case. For each HMS event there is a corresponding OBU event, and for each OBU event

there is a corresponding HMS event. This is the key to the embedding results. To illustrate

the first half of this claim, consider HMS event E (“object a is P”). This corresponds to

OBU event E. In general, for a given HMS event, the sense of the equivalent OBU event

is determined by the base space of the HMS event, and the reference is determined by the

states in the richest state space of the HMS structure. Of course showing this correspondence

is not sufficient to demonstrate equivalence between the two models. We must also show
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correspondence is preserved under negation, conjunction, knowledge and awareness. Tables

1 – 4 demonstrate that this is indeed the case for events E and F . We now formalize the

notion of an embedding, and prove our main result.

Let a knowledge-awareness structure (KA structure) consist of

1. a set of events, E

2. a negation operator, ¬ : E → E

3. a conjunction operator, ∧ : E × E → E

4. a knowledge operator for each agent i, Ki : E → E

5. an awareness operator for each agent i, Ai : E → E

(With slight abuse of terminology, in what follows we use “OBU structure” (or “HMS

structure”) to refer to the KA structure derived from a particular OBU (or HMS) structure,

as well to refer to the original structure itself.)

Take two KA structures, M1 = (E1,¬1,∧1, K1
i , A

1
i ) and M1 = (E2,¬2,∧2, K2

i , A
2
i ). We

say that M1 can be embedded in M2 if there is an injective function f : E1 → E2 with the

following properties

• f(¬1E) = ¬2f(E)

• f(E ∧1 F ) = f(E) ∧2 f(F )

• f(K1
i (E)) = K2

i f(E)

• f(A1
i (E)) = A2

i f(E)

Our main result says that generalized HMS structures can be embedded in OBU struc-

tures and vice versa.

Theorem 1

(a) Every generalized HMS structure can be embedded in some OBU structure;

(b) Every OBU structure can be embedded in some generalized HMS structure.

The need to consider generalized HMS structures to obtain this embedding result arises

(roughly) because Heifetz et al. [8] impose “partitional” properties on their possibility cor-

respondences (Generalized Reflexivity and Stationarity), while Board & Chung [2] make

no such restrictions. This raises an obvious question: Do the embeddings preserve these

partitional properties? To be more precise, can we embed every HMS structure into an

OBU structure that is partitional in some appropriate sense, and vice versa? To answer this

question, consider the following restrictions on an OBU structure:
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1. reflexivity: w ∈ Ii(w)

2. stationarity: If w′ ∈ Ii(w) then Ii(w′) = Ii(w)

3. measurability: w′ ∈ Ii(w), then Ai(w′) = Ai(w)

The following proposition now provides a partial answer to our question:

Proposition 4

(a) Every HMS structure can be embedded in some OBU satisfying reflexivity and station-

arity;

(b) Every OBU structure satisfying reflexivity, stationarity and measurability can be embed-

ded in some HMS structure.

The difference between part (a) and the quasi -converse, (b), is the measurability condi-

tion. Example 3 in the appendix shows that, with the embedding defined in the proof of

Theorem 1(a), not every HMS structure can be embedded in an OBU structure satisfying

reflexivity, stationarity and measurability. It is an open question whether measurability can

be preserved with an alternative embedding. We can show that measurability of the OBU

structure is required for part (b) of the Proposition: Example 4 in the appendix provides an

OBU structure that satisfies reflexivity and stationarity but not measurability that cannot

be embedded in an HMS structure with any embedding (of course, by Theorem 1(b), it can

be embedded in some generalized HMS structure).

4 Conclusion

We have attempted to provide a direct comparison between two rather different approaches

to modeling agents’ unawareness: the object-based approach of Board & Chung [2] and the

subjective-state-space approach of Heifetz et al. [8]. Our main result, Theorem 1, shows

HMS structures can be embedded within OBU structures, and vice versa.

We believe that this result helps us understand both models better, adding value to each.

In the case of OBU structures, the embedding result shows that it is valid to interpret the

set of objects as propositions, so that (un)awareness of basic propositions provides the foun-

dations for (un)awareness of more complex propositions, as is the case in most of the other

related literature. On the other hand, we believe there may be some benefit in maintaining

the distinction the objects and the properties they satisfy. Although the OBU structures

described above derive an agent’s unawareness of propositions from her unawareness of the

objects described by those propositions, one can envisage an extension where unawareness of
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properties is also modeled. A property-unawareness function could work (roughly) as follows:

if an agent is unaware of a given property, then she would be unaware of any event containing

one state but not another, where the two states could only be distinguished by whether or

not various objects satisfied that property. Combining such a property-unawareness function

with the object-unawareness function analyzed above would allow us to separate two kinds

of unawareness: and agent could be unaware that “Yao Ming is tall” either because she has

no idea who Yao Ming is or because she does not understand the concept of height.

The embedding results may also allow a re-interpretation of HMS structures. Note that

both OBU structures and HMS structures can be used to provide semantics for formal

languages that can be used to describe what agents know and what they are aware of. Both

sets of authors provide details of how this can be done, along with sound and complete

axiomatizations (Board & Chung [2] and Heifetz et al. [9]).9 But while Heifetz et al. use

propositional modal logic, Board & Chung use the considerably richer language of first-order

modal logic, allowing us to separate objects from the properties they may or may not satisfy,

and also enabling quantification over those objects. The proof of Theorem 1 (b) above

suggests that HMS structures can be used to capture quantification, and therefore perhaps

also to provide semantics for a first-order logic.

A Appendix

Proof of Proposition 3.

Part 1:

(o) Suppose that E is an event. We need to show that there exists a basis D ⊆ S(E) such

that D↑ = Ki(E). Assume Ki(E) is nonempty. Define D = {w ∈ S(E) | Πi(w) ⊆ E}. By

Confinement and the definition of Ki-operator, D = Ki(E) ∩ S(E).

We first show that D↑ ⊆ Ki(E). Let w ∈ D↑, w ∈ S for some S � S(E). Then

wS(E) ∈ D. Hence, by definition of D and Confinement, Πi(wS(E)) ⊆ E ∩ S(E). We claim

that Πi(w) ⊆ E. Since w ∈ D↑, w ∈ S for S � S(E) then by Confinement Πi(w) ⊆ S ′ for

some S ′ � S. By Projections preserve ignorance, Π↑i (w) ⊆ Π↑i (wS(E)). Hence S ′ � S(E). By

Projections preserve knowledge, (Πi(w))S(E) = Πi(wS(E)). Since Πi(wS(E)) ⊆ E ∩ S(E), we

have (Πi(w))S(E) ⊆ E ∩S(E). Hence Πi(w) ⊆ E. Thus by the definition of the Ki-operator,

w ∈ Ki(E).

Next, we show that Ki(E) ⊆ D↑. Let w ∈ Ki(E). By definition of the Ki-operator,

Πi(w) ⊆ E. Let w ∈ S ′. By Confinement, there exists space a S � S ′ such that Πi(w) ⊆ S.

Since Πi(w) ⊆ E we must have S � S(E). Since Πi(w) ⊆ E, we have (Πi(w))S(E) ⊆
9Halpern & Rego [7] provide two alternative axiomatizations of HMS structures

16



E ∩S(E). By Projections preserve knowledge, (Πi(w))S(E) = Πi(wS(E)). Hence Πi(wS(E)) ⊆
E ∩ S(E). Therefore wS(E) ∈ D and thus w ∈ D↑.

Finally, if Ki(E) is empty, then by the definition of the Ki-operator we have Ki(E) =

∅S(E).

(i), (ii) and (v). The proofs of Proposition 2 (i), (ii) and (v) in Heifetz et al. [8] apply

respectively.

Part 2: For convenience, we prove the properties in a different order:

(x) Weak Necessitation: This follows directly from the definition of the awareness and

knowledge operators.

(ix) AU-Introspection: Ui(E) = UiUi(E). This is equivalent to Ai(E) = AiUi(E). By Weak

Necessitation and the definition of the unawareness operator, AiUi(E) = Ki(S(Ui(E)↑)) =

Ki(S(E)↑) = Ai(E).

(vii) Plausibility with “⊇”: Ui(E) ⊆ ¬Ki(E) ∩ ¬Ki¬Ki(E). This is equivalent to Ai(E) ⊇
Ki(E) ∪ Ki¬Ki(E). By definition of the awareness operator, Ki(E) ⊆ Ai(E). By Weak

Necessitation and the definition of the awareness operator, Ki¬Ki(E) ⊆ A(¬Ki(E)) =

Ai(E). Hence the property follows.

(x) Strong Plausibility with “⊆”: By definition of the awareness operator, Ki(E) ⊆ Ai(E).

By Weak Necessitation and the definition of the awareness operator,

Ki(¬Ki)
n(E) ⊆ Ai((¬Ki)

n(E)) = Ai(E)

for any n = 1, .... Hence the property follows.

(xiii), (xiv) and (xvi). The proofs of Proposition 3 (6), (7) and (9) in Heifetz et al. [8]

apply respectively.

(xiv) AK-Self Reflection: AiKi(E) = Ai(E). By Weak Necessitation and the definition of

the knowledge operator, AiKi(E) = Ki(S(Ki(E))↑) = Ki(S(E)↑) = Ai(E).

(xvi) A-Introspection with “⊆”: KiAi(E) ⊆ Ai(E). By the definition of the awareness op-

erator, KiAi(E) ⊆ AiAi(E) = Ai(E), where the last equality follows from AA-Self reflection.

The following example shows that without Stationarity, HMS structures may fail to

satisfy Negative Non-Introspection and Weak Negative Introspection.
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Example 1 Consider a HMS structure with one space only, S = {w1, w2}. The possibility

correspondence of the single agent is given by Π(w1) = {w1} and Π(w2) = S. Note that

this specification violates Stationarity. Consider the event E = {w1}. Then K(E) = {w1},
¬K(E) = {w2}, K¬K(E) = ∅, ¬K¬K(E) = S, K¬K¬K(E) = S, ¬K¬K¬K(E) = ∅,

and A¬K(E) = S. Thus, ¬K(E) ∩ ¬K¬K(E) = {w2} * ¬K¬K¬K(E) = ∅, violating

Negative Non-Introspection.

Moreover, ¬K(E) ∩ A¬K(E) = {w2} * K¬K(E) = ∅, violating Weak Negative Intro-

spection.

The next example shows that without Generalized Reflexivity and Stationarity, HMS

structures may fail to satisfy KU -Introspection. (Note that Heifetz et al. [10] show that

KU -Introspection holds without Generalized Reflexivity.)

Example 2 Consider the HMS structure shown in Figure 3. There is a totally ordered set of

w1 w2

S

w3

S’S’

Figure 3: The failure of KU -Introspection

two spaces, S and S ′. The possibility correspondence of the single agent is given by the ovals

and arrows. Since w1 /∈ Π↑(w1), it violates Generalized Reflexivity. Moreover, w2 ∈ Π(w1)

but Π(w2) 6= Π(w1). So the possibility correspondence violates Stationarity. Consider the

event E = {w1}. We have A(E) = {w1}, U(E) = {w2}, and KU(E) = {w1}, violating

KU-introspection.

Proof of Theorem 1. As above, we use the symbols ¬,∧,Ki, and Ai for OBU-negation,

conjunction, knowledge and awareness; for the sake of clarity, we adopt the new symbols ∼
and f for HMS-negation and conjunction, but continue to use Ki and Ai for HMS-knowledge

and awareness.

18



(a) We prove this direction of the embedding result result for a special class of generalized

HMS structures (every example provided in Heifetz et al. [8] fits in this class). The extension

to the class of all generalized HMS structures follows immediately from Lemma 1 below.

Say that a generalized HMS structure is standard if there is some set Φ and a labeling

of the state spaces {Sα}α⊆Φ such that Sα � Sβ if and only if α ⊆ β.

From a standard generalized HMS model, construct an OBU model as follows:

• W = SΦ

• O = Φ

• Ii (w) = Π↑i (w) ∩ SΦ (effectively, this projects the states the agent considers possible

back to the richest state space, SΦ)

• Ai (w) = α, where α ⊆ Φ satisfies Πi (w) ⊆ Sα (note that by the HMS Confinement

condition, this α is unique).

For any HMS-event E with base space Sα, we define f(E) = (E ∩ SΦ, α). To see that

f is injective, note that two HMS-events E and F can differ only they have different bases;

thus either (i) they have different base spaces, or (ii) their bases are different subsets of the

same base space S. In the first case, the senses of f(E) and f(F ) must differ, and in the

second case their references must differ.

Next, let E be an HMS-event, with base space Sα and basis B, and F be an HMS-event

with base space Sβ and basis C (we ignore the cases where B = ∅ or C = ∅, which are

straightforward). Then:

Negation: f(∼ E) = f
(
(Sα \B)↑

)
= (SΦ \ E,α) = ¬ (E ∩ SΦ, α) = ¬f (E)

Conjunction: f (E f F ) = f (E ∩ F ) = (E ∩ F ∩ SΦ, α ∪ β) = (E ∩ SΦ, α)∧(F ∩ SΦ, β) =

f (E) ∧ f (F )

Knowledge:

f (Ki (E)) = f({w ∈ Σ | Πi(w) ⊆ E})
= f(D↑) for some D ⊆ Sα (by property (o) on page 10, since Sα = S(E))

= (X,α), where X = D↑ ∩ SΦ.

Take any w ∈ X. Then (i) Πi(w) ⊆ E. The HMS Confinement conditions requires

that Πi(w) ⊆ Sγ for some γ ∈ Φ, and Πi(w) ⊆ E implies that α ⊆ γ. Since Ai(w) = γ

by construction, we have α ⊆ Ai(w); and (ii) Ii(w) = Π↑i (w) ∩ SΦ ⊆ E ∩ SΦ, since

Π(w) ⊆ E.
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Next, for any w ∈ SΦ, suppose Ii(w) ⊆ E∩SΦ and α ⊆ Ai(w). Then Π↑i ∩SΦ ⊆ E∩SΦ

and Πi(w) ⊆ Sγ for some γ ⊇ α; hence, Πi(w) ⊆ E, and so w ∈ D↑ ∩ SΦ = X. Thus,

X = {w ∈ SΦ | Ii(w) ⊆ E ∩ SΦ and α ⊆ Ai(w)} ,

and so f(Ki(E)) = (X,α) = Kif(E), as required.

Awareness: Note that by the definition of the awareness operator, we have by (x) Weak

Necessitation, Ai(E) = Ki(S(E)↑) for any event E. So it follows from property (o)

of the knowledge operator that Ai(E) has base space Sα = S(E). Thus f(Ai(E)) =

(X,α), where X = Ai(E)∩ SΦ. Again by (x) Weak Necessitation and the proof of the

knowledge part it follows that

X = {w ∈ SΦ|Ii ⊆ S↑α ∩ SΦ and α ⊆ Ai(w)}
= {w ∈ SΦ|α ⊆ Ai(w)}

and so f(Ai(E)) = (X,α) = Aif(E) as required.

(b) For the other direction, start with an OBU structure 〈W,O, {Ii}, {Ai}〉 and define a

generalized HMS structure
〈 (
{Sα}α∈Φ ,�

)
,
(
rαβ
)
β�α ,

(
Πi

)〉
as follows:

• Φ = 2O. Define a partial order on Φ by set inclusion, i.e. α � β if and only if α ⊇ β.

Since the set of all subsets is a complete lattice, so is Φ.

• Sα = W for all α ∈ Φ. That is, each space Sα is a copy of W. Rename copies of w ∈ W

in Sα by wα. Spaces are disjoint. The order Φ can be extended to an order on the

spaces. Hence, S = {Sα}α∈Φ is a complete lattice.

• Projections are defined in the obvious way by for α � β, α, β ∈ Φ, rαβ (wα) = wβ. It is

straightforward to verify that indeed projections are surjective, commute and are the

identity when domain and codomain coincide.

• For w ∈ Sα,

Πi(w) = Ii
(
rαinf{α,Ai(w)}(w)

)
.

Note that inf{α,Ai(w)} is well defined since Φ is a complete lattice. Confinement

follows by construction. Projections Preserve Ignorance follows with equality from the

construction. Projections Preserve Knowledge follows by construction. Projections

Preserve Awareness follows from previous properties (see Remark 3 in Heifetz et al.

[8]).
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Thus we have shown that this construction indeed defines a generalized HMS structure.

Next, define an embedding by for any OBU event (B,α) ∈ EOBU , set

g(B,α) = (B↑, Sα)

where B is the basis and Sα the base space of the corresponding event in the generalized

HMS structure. First, note that g is injective, since OBU events differ if and only if their

references (bases) are different or their senses (base spaces) are different. Then:

Negation: g(¬(B,α)) = g(W \B,α) = ((Sα \B)↑, Sα) = (∼ B↑, Sα) = ∼ g(B,α)

Conjunction: g((B1, α1) ∧ (B2, α2)) = g(B1 ∩ B2, α1 ∪ α2) = (B↑1 ∩ B
↑
2 , Ssup{α1,α2}) =

(B↑1 , α1)f (B↑2 , α2) = g(B1, α1)f g(B2, α2)

Knowledge:

g(Ki(B,α)) = g(({w | α ⊆ Ai(w)}, α) ∧ ({w | Ii(w) ⊂ B}, α))

= g(({w | α ⊆ Ai(w)}, α)) ∧ g(({w | Ii(w) ⊂ B}, α))

= ({w ∈ Sα | α ⊆ Ai(w)}↑, Sα) ∧ ({w ∈ Sα | Ii(w) ⊆ B}↑, Sα)

= ({w ∈ Sα | α ⊆ Ai(w)}↑ ∩ {w ∈ Sα | Ii(w) ⊆ B}, Sα)

= ({w ∈ Sα | Πi(w) ⊆ B}↑, Sα)

= ({w ∈ Σ | Πi(w) ⊆ (B↑, Sα)}, Sα)

= (Ki(B
↑, Sα), Sα)

= Ki(B
↑, Sα)

= Ki(g(B,α))

Awareness:

g(Ai(B,α)) = g({w | α ⊆ Ai(w)}, α)

= ({w ∈ Sα | α ⊆ Ai(w)}↑, Sα)

= ({w ∈ Sα | Πi(w) ⊆ Sα}↑, Sα)

= ({w ∈ Σ | Πi(w) ⊆ S↑α}, Sα)

= (Ai(B
↑, Sα), Sα)

= Ai(B
↑, Sα)

= Ai(g(B,α))
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Proof of Proposition 4.

(a) We use the same embedding as in the proof of Theorem 1(a). It remains to show that if

the generalized HMS structure satisfies Generalized Reflexivity and Stationarity (i.e. if we

started with an HMS structure), then the OBU structure thus defined satisfies reflexivity

and stationarity.

Generalized Reflexivity of Πi implies reflexivity of Ii. Suppose w ∈ Π↑i (w), with

Πi(w) ⊆ S. Consider two cases: Case (i) S = SΦ. Then by Confinement w ∈
Π↑i (w) ∩ SΦ = Πi(w). Thus w ∈ Ii(w) as required. Case (ii) S � SΦ. Let w ∈ S ′.

By Confinement SΦ � S ′ � S. Consider any w′ ∈ (rSΦ

S′ )−1(w). Note that w′ ∈ Π↑i (w)

and w′S′ = w. By Projections Preserve Ignorance, Π↑i (w
′) ⊆ Π↑i (w). Hence, by Con-

finement Πi(w
′) ⊆ S ′′ for some S ′′ � S. Note that w′S = wS. Hence by Projections

preserve knowledge (Πi(w))S = (Πi(w
′))S. Thus w′ ∈ Π↑i (w

′) ∩ SΦ and we conclude

that w′ ∈ Ii(w′), as required.

Stationarity of Πi implies stationarity of Ii. Suppose w′ ∈ Πi(w) with Πi(w) ⊆ S. By

Stationarity, Πi(w
′) = Πi(w). Let w ∈ S∗. By Confinement, S∗ � S. Consider

any w′′′ ∈ (rSΦ
S )−1(w′) and w′′ ∈ (rSΦ

S∗ )−1(w). Note that w′′′ ∈ Π↑i (w) and w′′′S = w′

and w′′S = wS. By Projections Preserve Ignorance, Π↑i (w
′′′) ⊆ Π↑i (w

′) and Π↑i (w
′′) ⊆

Π↑i (w). Hence, by Confinement Πi(w
′′′) ⊆ S ′′′ and Πi(w

′′) ⊆ S ′′ for some S ′′′ � S

and S ′′ � S∗ � S. By Projections Preserve Knowledge, (Πi(w
′′′))S = Πi(w

′) and

(Πi(w
′′))S = Πi(wS) = Πi(w). Note that w′′′ ∈ Π↑i (w

′′) ∩ SΦ. Moreover, since we

previously observed that Πi(w
′) = Πi(w) by Stationarity, we must have Π↑i (w

′′′)∩SΦ =

Π↑i (w
′′) ∩ SΦ. Therefore for w′′′ ∈ Ii(w′′) we have Ii(w′′′) = Ii(w′′), as required.

(b) We use the same embedding as in the proof of Theorem 1(b). It remains to show that if

the OBU structure satisfies reflexivity, stationarity and measurability, then the embedding

defines an HMS structure.

Recall that for w ∈ Sα,

Πi(w) = Ii
(
rαinf{α,Ai(w)}(w)

)
.

Note that if the OBU structure satisfies measurability, then Generalized Reflexivity and

Stationarity follow from reflexivity and stationarity of Ii respectively.

The following example shows that with the embedding considered in the proofs of Theo-

rem 1(a) and Proposition 4(a), not every HMS structure can be embedded into some OBU

structure satisfying reflexivity, stationarity and measurability.
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ab ¬a¬b ¬ab a¬b

Sa bSa, b

a ¬a b ¬b

SbSa

Ø

SØ

Figure 4: The failure of measurability

Example 3 Consider the HMS structure for one agent given in Figure 4. The possibility

correspondence is given by the ovals and arrows on a lattice of four spaces. Notice that this

is an HMS structure: In particular, Generalized Reflexivity and Stationarity are satisfied.

According to the embedding defined in Theorem 1(a), we have

I(ab) = {a,¬a}↑ ∩ Sa,b = Sa,b

I(¬ab) = {b,¬b}↑ ∩ Sa,b = Sa,b

and

A(ab) = {a}
A(¬ab) = {b}

So we have (¬ab) ∈ I(ab) but A(ab) 6= A(¬ab). The measurability condition is not

satisfied (though the OBU structure is reflexive and stationary).

Example 4 shows that measurability is required for Proposition 4(b), i.e. that not every

OBU structure satisfying reflexivity, stationarity but not measurability can be embedded

into an HMS structure.

Example 4 Consider the following OBU structure for one agent: W = {w1,w2}, O =

{a, b}, I(w1) = I(w2) = {w1,w2}, A(w1) = {a, b}, and A(w2) = {a}. Note that this OBU
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structure satisfies both reflexivity and stationarity but does not satisfy measurability. Let

event E = (W,O). Then A(E) = (w1,O), while K(A(E)) = (∅,O). Suppose this OBU

structure can be embedded into some HMS structure, with embedding function f . Since f is

injective, we have f(A(E)) 6= f(K(A(E))), and hence A(f(E)) 6= K(A(f(E))). This violates

A-Introspection, yielding a contradiction.

To extend the proof of Theorem 1(a) to the class of all generalized HMS structures,

it suffices to show that every generalized HMS structure can be embedded in a standard

generalized HMS structure.

Lemma 1 Every generalized HMS structure can be embedded in a standard generalized HMS

structure.

Proof. Before we start, we develop an alternative representation of generalized HMS struc-

tures that is more convenient for our purposes.

Fix an arbitrary generalized HMS structure 〈S,�, r,Πi〉, where S = {Sα}α∈A is a com-

plete lattice of disjoint state spaces. Let Sα and Sα be the maximal and minimal state spaces,

respectively. Let X = Sα. For any α, define a class of subsets of X as follows:

Pα := {(rαα)−1(wα) | wα ∈ Sα}.

We use Pα to denote a generic element of Pα. Since r is surjective, Pα is a partition of X.

Moreover, there is a one-to-one correspondence between Pα and Sα. Let f : ∪αSα → ∪αPα
denote this one-to-one correspondence. The advantage of working with the Pα’s rather than

the Sα’s is that we can take joins and meets of partitions and create new partitions.

There are a few properties of this one-to-one correspondence that are worth pointing

out. First, if Sα � Sα′ , then Pα is a weakly coarser partition of X than Pα′ . Moreover,

for any w ∈ Sα and w′ ∈ Sα′ , rα
′

α (w′) = w if and only if f(w′) ⊆ f(w). Third, for any α,

Pα =
∨
{Pα′ | α′ � α}, where

∨
is the join operator on partitions.

Now, let’s embed this arbitrary generalized HMS structure into a standard generalized

HMS structure. Recall that an generalized HMS structure is standard if there is some set Φ

and a labeling of the state spaces
{
Ŝβ
}
β⊆Φ

such that Ŝβ � Ŝβ′ if and only if β ⊆ β′. Recall

that A is the index set in the original HMS structure, and Sα is the minimal state space.

Let Φ := A \ {α}. Define a mapping g : A→ 2Φ as follows: g(α) := {α′ ∈ Φ | α′ � α}. Let

B = g(A). Note that g is a one-to-one correspondence between A and B. Also note that,

since g(α) = ∅ and g(α) = Φ, we have ∅,Φ ∈ B.

We now construct a class, {Pβ}β⊆Φ, of partitions of X. For any β ⊆ Φ, define

Pβ :=
∨
{Pα | g(α) ⊇ β}.

24



This construction has the following nice property: for any β and β′ such that β ⊆ β′, we

have {Pα | g(α) ⊇ β} ⊆ {Pα | g(α) ⊇ β′}, and hence Pβ is a weakly coarser partition of

X than Pβ′ . Moreover, For any α and β such that β = g(α), we have Pβ = Pα. So there

is a one-to-one correspondence between ∪α∈APα and ∪β∈BPβ. Let’s abuse notation and use

g to denote this one-to-one correspondence as well. Note that g preserves both order and

projections.

We use these Pβ’s as the state spaces in our standard generalized HMS structure. The

partial ordering of these state spaces is the natural one, and so is the projection. It remains

to define the possibility correspondences, Π̂i, in the standard generalized HMS structure. For

any β ∈ B, and any Pβ ∈ Pβ, the construction is straightforward: simply define Π̂i(Pβ) :=

g(f(Πi(f
−1(g−1(Pβ))))). For any other Pβ’s, the specification of Πi can be arbitrary. For

example, we can simply define Πi(Pβ) := {Pβ}.
That this standard generalized HMS structure embeds the original generalized HMS

structure is obvious.
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