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Example

Ann is a violin maker. She needs to buy wood for her next creations, so she goes into a
wood shop, where she is shown several pieces of wood that they need to choose from.

Together with Ann there is Carol, Ann’s student, who
learning the job and joined Ann at the shop for the first
time. “There is only one way to choose the wood for our
violins” says Ann to Carol “Tap on it and hear which sound it
produces.” Carol nods, but is puzzled as she has noticed
something else: “I thought we mainly had to look at the
color of the wood. In fact, | noticed that all the wood pieces
you used in the past have some dark brown shades.”

Ann is a bit surprised to hear that. She never noticed. But
after thinking a bit about it, she realises that color is
actually crucial as well, and replies “That’s actually correct.
Now that | think about it, | wouldn’t even consider a piece
of wood that doesn’t have these dark shades.”

- Ann’s choices are affected by more information than she is currently aware of.

- Two different kinds of knowledge:

1. Ann knows that sound is an indicator of quality. Explicit knowledge

2. Ann knows that color shades are an indicator of quality. Implicit knowledge
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Implicit knowledge

We are interested in that: knowledge without awareness.

e All phenomena in which agents have some true information, but they are currently
unaware they have it (and unaware they use it).

* Knowledge that can only be ascribed from the outside, from the modeler’s
perspective.
* |t can only be displayed in behavior, choices, or data.

* Does it really exist? Implicit measures: originally invented to measure
information that subjects are unable or unwilling to report (cannot be
measured with self-report measures)

* In general, every decision or interaction between agents or with the
environment may be affected by more information than we are currently aware
of. Some classical examples include:

* implicit bias, e.g., decisions in recruiting processes;
* expertise and knowledge how. Many skills are acquired without awareness,
e.g., chicken sexers.



Our Goal

Heifetz, Meier, and Schipper (2006), (2008)

[9 Introduce implicit knowledge in unawareness structures by ]

Why in unawareness structures (HMS models)?

“overt” levels of awareness;

it is easy to “plug into” decision theory and game theory, and
thus develop applications in economics & social sciences;
feature explicit knowledge, but lack any notion of implicit
knowledge.



Implicit Knowledge in Logic, Computer Science

Fagin & Halpern (1988), answer to logical omniscience problem:
“Explicit knowledge = Implicit Knowledge & Awareness”

Primitive unawareness structures Primitives of awareness structures
by Heifetz et al. (2006, 2008) by Fagin & Halpern (FH models)

—>Fagin Halpern (FH) implicit knowledge notion:

e standard S5 properties

e implicit knowledge is the same of explicit knowledge modulo
awareness

éEquwaIence of HMS models with impl. K with FH models:

* it answers the theoretical question: are the two implicit knowledge
notions the same?
* we use the equivalence to obtain soundness and completeness.

* one of the constructions used to show equivalence is informative
about the nature of HMS models and relations with FH models.
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p means “the sound
of the wood is an
indicator of quality”

g means “the color
shades of the woo
are indicators of
quality”



Unawareness
structure:

Complete lattice
of state spaces:

S={S,9,8".)

Partially ordered
by expressiveness:

S' =S

Q:=5uUSs"U...
Sp

Projections:
For 8" =S, r3 : S' — S

We will mainly work with

unawareness structures where
there is a space Sy forall @ € At




Events /

An event E C € is of / , =L | H

the form £ = D7 (\E.E\ ePi—e P4 ® 0q ’.ﬁ})_'| |'
for some base D C S N =1 |11l [ g
and base space S, where 7 ' BT Pq

DV = US’ES(Tg/)_l(D)

Negation: For event I/ with
base D and base-space S,

B = Ugps(rg) T (S\ D)



ENF

Conjunction




ENF

Conjunction



Disjunction:
EVFEF :=-(—-FEN-F
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For each individual 7 € I, there is

a possibility correspondence
I, : © — 2% such that

(0) Confinement:

(i)

(iii)

If we S then II;(w) C 5’
for some S’ < S.

Generalized Reflexivity:
w € HZT (w) for
every w € (2.

Stationarity:
W' e Il (w)
implies IL;(w’) = IL;(w).

Projections Preserve Ignorance:
IfweS and S <X 5’
then IT! (w) C TIT (wg). Color code:

Ann
Projections Preserve Knowledge:

Carol
IfS<8 =<8 weS and Il;(w) C 5,
then (I;(w))s = IL; (wg). S@
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K;(F):={we Q:1;(w) C F},

if there is a state w such that II;(w) C E,,
and by K;(E) := (%) otherwise =

It holds that: S == Sy g
1. At pg, Ann (explicitly) s ‘ bq
knows p;

2. At pg, Ann thinks that = / A\
Carolis unaware of p;  /

if there is a state w s.t. II;(w) C S = S(E),
and by A;(E) := 05F) otherwise

U;(E) = ~A;(E) S(Z) 13



Ki(F) ={weQ:Il(w) C E}, Ai(E) ={w e Q:1l;(w) €S = S(K)},

if there is a state w such that II;(w) C E,  if there is a state w s.t. II;(w) C S = S(E),
and by K;(E) := 0°¥) otherwise and by 4;(E) := 0°F) otherwise

U’L(E) — ﬁAz‘(E)

Proposition K; satisfies Proposition K; and A; satisfy
(i) Ki(Q) =Q, 1. K,Uj(E) = 058,
(i) Ki (Maer Br) = Naer Ki (B, 2. Uy(E) = U;Uy(B),
(iii) E C F implies K;(E) C K;(F), 3. A(E) = K, (S (E)T),
() KiB) € 8, 1 U(E) = (N2, (K" (),
(v) KilE) € Kila(E), 5. ~K;(E) N A-Ki(E) = Ki~Ki(E),
(vi) —K;i(E) N ~K;~K;(E) C ~K;~K;~K;(E).

Ai(E) = Ai(-E),
ﬂAEL A; (Ex) = A; (m/\GL EA)?
A;(E) = A;K;(F),

Explicit knowledge A;(E) = A;Ai(E)

© o N o

10. A;(F) = K;A;(E). H



Ki(F) ={weQ:Il(w) C E}, Ai(E) ={w e Q:1l;(w) €S = S(K)},

if there is a state w such that II;(w) C E,  if there is a state w s.t. II;(w) C S = S(E),
and by K;(E) := 0°¥) otherwise and by 4;(E) := 0°F) otherwise

U’L(E) — ﬁAz‘(E)

Proposition K; satisfies Proposition K; and A; satisfy
(i) Ki(Q) =Q, 1. K,Uj(E) = 058,
(it) K (Naer Bx) = Naer Ki (By), 2. U(E) = U;Ui(E),
(iii) £ C F implies K,(E) C K;(F), 3. A(E) = K, (S (E)T),
v} Kal) € 4 UUE) = (2, (K" (B),
(v) KilE) € KiK(E), 5. ~K;(E) N A=K (E) = K;~K(E),
(vi) ~K;(E) N ~K;~K;(E) C ~K;~K;,~K;(E).

Ai(E) = Ai(-E),
ﬂAEL A; (Ex) = A; (m/\GL EA)?
A;(E) = A;K;(F),

Explicit knowledge A;(E) = A;Ai(E)

© o N o

10. A;(F) = K;A;(E). "



Fagin & Halpern (1988):
“Explicit knowledge = Implicit Knowledge & Awareness”

1) Can we this notion of implicit knowledge from
explicit knowledge?

2) Can we take implicit knowledge and awareness
in unawareness structures and derive explicit
knowledge?



Fagin & Halpern (1988):
“Explicit knowledge = Implicit Knowledge & Awareness”

1) Can we this notion of implicit knowledge from
explicit knowledge?



Implicit Knowledge

Let’s focus on Ann only.

1. Ann explicitly knows p and
implicitly knows gq.

2. Ann’simplicit knowledge is
the same of explicit
knowledge modulo
awareness.

- Introduce another

possibility correspondence.

- Tie it to the explicit possibility
correspondence: they are the same
at the agents’ awareness level.

Color code:
Explicit knowledge

- Which properties give us this notion of implicit knowledge?
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Implicit Knowledge

Given an explicit possibility correspondence II; for individual ¢ € I,
the implicit possibility correspondence A; : Q — 2 of individual ¢ satisfies

(i) Strong Confinement: For any ® C At and w € S¢, A;j(w) C Ss.
(ii) Reflexivity: For any w € Q, w € A;(w).
(iii) Stationarity: W' € A;(w) implies A;(w') = Ay(w).

)

(iv) Projections Preserve Knowledge: For any ® C At, if w € Sg, then A;(w)g = Aj(wy)
for all ¥ C .

(v) FExplicit Measurability: w' € A;(w) implies I1;(w') = 1L;(w).

(vi) Implicit Measurability: w’ € I1;(w) implies A;(w') = Ai(w) sy, (o, -
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Implicit Knowledge

Implicit Knowledge Operator:
if there is a state w € S such that A;(w) C F,
and by L;(E) := (° otherwise
Proposition [; satisfies Proposition K;, A;, and L; satisfy
(i) For ® C At, L;(SL) = So 1. K;(E) = Li(E) N A;(E),
(iii) £ C F implies L;(E) C L;(F). 3. Ay(E) = Li(Ai(E)),
(iv) Li(E) 4. ALi(E) = Ai(E).
(v) Li(E) € LiLi(E).
(vi) —Li(E) € Li~Li(E).

20



NEXT STEPS

» Transform HMS models with implicit knowledge into FH
models, and viceversa HMS into FH models.

»Show that the two satisfy the same formulas from a
language with explicit, implicit knowledge and awareness.

» Derive soundness and completeness of HMS models with
implicit knowledge wrt a logic proposed by FH ‘88.



As we talk about formulas...

We need to move to a syntax-based framework:

M = <]7 {Soz}ongta (Tg)ﬁgow (Hi)iED (Ai)ieln U>
The valuation function maps propositions to events: \

v : At — I, where X is the set of events.

(Recall: events are sets of
states, upward closed, where
certain propositions are true)

As the valuation function takes the set At as input, we say that M is an HMS

model with implicit information, defined for At.



Language for
Explicit Knowledge, Implicit Knowledge, and Awareness

With ¢ € I and p € At, define the language £ by
pu=T|pl-ploNe|kip|ap|lip

Let L, = {p € L: At(p) C a} be the sublanguage of £ built on propositional variables
in a C At.

K’ We will use this sublanguage definition in the construction
of HMS lattice, to define the awareness in the subspaces.

Fagin Halpern (1998) defines
kipo = a;p N by, for any o € L



Fagin Halpern ‘88 Awareness Model

An FH model is a tuple K = (I, W, R, V, A) consisting of

e a non-empty set of individuals 7, pq

K A X
3 {p, -} {p, -} g, }

e a non-empty set of states W,
e an accessibility relation R; C W?2 for all i € I,
e a valuation V : At — 2W,

e an awareness function A; : W — 2%, for all i € I.

Let At(¢) = {p € At: p is a subformula of ¢}, for all ¢ € L. The function A satisfies

PP (Awareness is Generated by Primitive Propositions) if for all ¢ € I and ¢ € L,
v € A;(w) iff for all p € At(p), p € A;(w).

KA (Agents Know What They are Aware of) if for all i € I, (w,v) € R; implies
Az(w) = .AZ(’U)

- We say that an FH model is defined for At, if the valuation function takes At as input.
24



FH Models as Semantics

Let K= (I,W, R, V, A) be an FH model for At and let w € W. Satisfaction of £ formulas

in K is given by

K,wl-T  forall we W; KiwlFpAy iff
K,wlFp iff we V(p); K,w I ¢;p iff
KiwlkF—p it K wlf o; K,w Ik a;p ift

K,w - Ek;p ift

K,w IF ¢ and K, w I 1;
K,tIF ¢ for all (w,t) € R;;
¢ € A;(w) and

K,t I @ for all (w,t) € R;.

Unawareness Models as Semantics

Let M= (I,S,R,1II, A, v) be an HMS model for At with implicit information, let w € ().

Satisfaction of £ formulas in M is given by

M,wkET for all w € Q
M,wkEp iff wev(p) M,wE e iff Aj(w) C ]
MwkE-p iff we[y] M,wEaip iff  Smw) = Spy

MiwE oAy it welp]ny]  MwEke iff Iiw) C [y

where [¢] = {w' € Q: MW" E ¢} for all p € L.
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FH-Transform: From Unawareness to FH Models

26



FH-Transform: From Unawareness to FH Models

Easy! The supremum of the lattice is already a Kripke model. We only need to
derive awareness:

bq —/ — P
o p.q P.q p. q
{p,.} o, t {p., -} {p. -}

To extract awareness info:

1. For each state, consider the
space where the explicit
possibility set lies;

2. Build all the formulas that can
be built from the atoms
defined at that space.

We obtain a notion of awareness generated
Sy by primitive propositions. 27



FH-Transform: From Unawareness to FH Models

Formal definition:

Let M = (I,S,R,II, A,v) be an HMS model for At with implicit information where the
supremum is S,;. The F H-transform model of M is FH(M) = (I,W, R, V, A) where

o W =54,

e R; C W?is such that (w,w’) € R; iff W' € Aj(w),

o V: At — P(W) is such that V(p) ={w e W :w € v(p)}, for every p € At,
o A;: W — 2% is such that A;(w) = {p € L: At(p) C ® where II;(w) C Sp}.

Proposition  For any unawareness model M, the F H-transform FH(M) = (W, R, V., A)
is an FFH model, where R is an equivalence relation.

Proposition  For any unawareness model M, the F'H-transform FH(M) = (W, R,V, A)

is propositionally determined, as A is generated by primitive propositions and agents know
what they are aware of.

28



U-Transform: From FH to Unawareness Models

29



U-Transform: From FH to Unawareness Models

Notice:

Spaces in an unawareness
models are nothing but the
bisimulation contraction of
the supremum, for a
restricted bisimulation notion
(defined for some @ C At).

Ex: Take the pg and the p~q
states. They are such that:

(atom) they contain the same
p-information;

(aware) agents are aware of
the same formulas from £, ;

(zig and zag) they only “see”
bisimilar states.

30



U-Transform: From FH to Unawareness Models

Strategy:
1. Take an FH model K defined for At.

2. Consider a notion of restricted bisimulation (® -bisimulation) and define the
®-bisimulation contraction K4 of the FH model K for all ® < At.

3. Order the contracted models {K}epcar by subset-inclusion of the atomic sets
&. This gives a complete lattice of FH models.

4. Extract knowledge and unawareness out of it and define the unawareness
model (U-transform).



U-Transform: From FH to Unawareness Models

Strategy:
1. Take an FH model K defined for At.

2. Consider a notion of restricted bisimulation (® -bisimulation) and define the
®-bisimulation contraction K4 of the FH model K for all ® < At.

3. Order the contracted models {K}epcar by subset-inclusion of the atomic sets
&. This gives a complete lattice of FH models.



U-Transform: a-Bisimulation Example

A ®-bisimulation between two FH models K = (I, W, R, V, A) and K' = (I', W', R, V', A"
for At is a relation Z[®] C W x W’ such that, for every (w,w’) € Z[®], every agent i € I,
and every p € O:

e atom: w e V(p) iff w' € V'(p).
o aware: Lo NA;(w) = LN AL(W).

o forth: if (w,t) € R; then there is a t’ € W’ such that (w’,t') € R, and such that
(t,t") € Z[D].

o back: if (w',t") € R, then there is a t € W such that (w,t) € R; and such that
(t,t') € Z|D].

33



U-Transform: FH-lattice

For all ® C At take the ®-bisimulation contraction
Ke = (I, Ws, Re, Vo, Agp) of an initial K
FH model K = (I, W, R,V, A), defined by {p,.} {p, ..} {p, ..} {p, .-}

pqg  p=q —pqg —p—q
@ ® ® ®

e Wy = {[w]e: we W} with
wle = {PtU{t e M: (K,w) 24 (K, t)};

Bisimulation contractions of K :

bqg  p—mq —pg —p—q
o ® ® ®

o Ro;={([w]o,[tlo): Fu' € [w]o, Kpq
3t € [t]e with (w', ) € Ri}; {p,.} o, {p,--} {p, .-}
o Vy:d — 2We with y D —p . q —q
Vo(p) = {|w]le € We: w e V(p)} r @ o g @—@
for all p € ®; 2R R 0) 0)
o Ass([w]e) = Ai(w) N Lo, 4
Ko

— To construct the FH lattice then order the contracted models by subset inclusion.
34



U-Transform: From FH to Unawareness Models

Strategy:

4. Construct an unawareness model out of the FH-lattice (define the U-transform).



U-Transform: From FH to Unawareness Models

pPqg  poq —pg —po
o p.q p.q p. q
< . 0} ) ()

p —p q —q
o—o o—o
Kp{p,~} {p,..} o 0 .
1)
®
Ko

* Copy the frame (lattice structure and implicit information A;);

* Each state [w]g in the FH-lattice contains info about the awareness of agent i. We
need that info to construct I1;:

> Map II; to the space defined for the set of atomic formulas W that the agent is

aware of at the considered state [W]g. Then let IT; ([w]e) S Sy and take [w']y that

are related to [w]w.
36



U-Transform Model

Let K= (I,W,R,V, A) be an FH model for At and consider its ®-bisimulation contrac-
tions Ko = (I, Ws, Re, Vp, Ag), for all & C At. Let Q = Uq)gAt Ws. The U-transform
model of K'is U(K) = (I,S,R,II, A, v), where

o S ={Wslaca: is a set of state-spaces Wy, defined for all & C At;

e R = (ry)ycs is such that ry : Wg — Wy where rg(we) = wy, with & C & C At;

o II; : O — 2% is such that for all ® C At, II;(we) > wy iff (wy,wy) € Ry, and
U={peAt:p€lUycapiiws ALP)};

o A;: Q2 — 2% such that A;(we) 3 wh iff (we, wy) € Ry

e v(p) ={we € Q: P> pand we € Vo(p)} for all p € At.

Proposition  For any partitional, propositionally determined FH model K for At, its
U-transform U(K) = (I, S, R, 11, A, v) is an HMS model for At with implicit information.
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Formula-equivalence follows

Proposition For any M that is an HMS model for At with implicit information,
where S 4 is its supremum and where F H(M) is its F H-transform, for all ¢ € L and all
w € SAt7

M,wkE ¢ iff FH(M),w IF ¢.

Proposition For any partitional, propositionally determined FH modelK = (I, W, R,V A)
with U-transform U(K), for all p € L, all w € W, and all we € Q2 with At(p) C @,

KiwFE ¢ iff UK), we IF ¢.
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Axiomatization

All substitution instances of propositional logic, including the formula T

(&g@ N (EZQO — fﬂ/i)) ~2 g{lﬁ (K, Distribution)
kip < (L;p A a;p) (Explicit Knowledge)
ai(e A Y) < (aip A a;)) (A1, Awareness Distribution)
a; QY > ajp (A2, Symmetry)
aikjp < a;p (A3, Awareness of Explicit Knowledge)
a;a;p <> a;p (A4, Awareness Reflection)
ailjp < ajp (A5, Awareness of Implicit Knowledge)
a;p — Lia;p (A11, Awareness Introspection)
—a; o — i—a;p (A12, Unawareness Introspection)
From ¢ and ¢ — 1, infer 1 (Modus Ponens)
From ¢ infer ¢;p (K-Inference)
bip = (T, Truth)
Lip — il (4, Positive Introspection)
=0 — Li—l;p (5, Negative Introspection)

- The logic given by rules and axioms in the table above is sound and complete with
respect to unawareness models with implicit information.
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Summary

Introduced implicit knowledge in unawareness structures,
namely knowledge the agent is not aware of.

Unawareness structures are nothing but a lattice of bisimilar-
spaces.

Unawareness structures with implicit knowledge are formula
equivalent to FH models, thus the logic for propositional
awareness axiomatizes their model class.



