
Insiders Trading on Unknown Unknowns

Burkhard C. Schipper∗ Hang Zhou†

Preliminary & Incomplete: April 20, 2021

Abstract

We study a CARA-normal asset market with a continuum of traders under asym-
metric awareness of components affecting the mean or the variance of the fundamental
value of the asset. While the prior literature focuses on asymmetric information, we
focus on asymmetric awareness. A trader is unaware of a component of the fundamental
value (e.g., a line item of the balance sheet or profit & loss of the stock’s firm) if she
does not conceive of it and hence does not even know that she does not know it. Traders
interact in a uniform price double auction with asymmetric awareness and private infor-
mation. We derive the linear symmetric Bayes-Nash equilibrium best understood as a
prediction in the medium-run because every realization is consistent with every trader’s
awareness but in the very long run traders may statically learn that they are biased.
We study market depth, price precision, price volatility, and ex ante trading volume
including some comparative statics w.r.t. the distribution of traders’ awareness. In a
version of the model with common signals, we study the incentives of aware traders to
raise the awareness of other traders. We completely characterize the nonempty set of
signals and pre-disclosure market prices for which aware traders raise the awareness of
unaware traders. Disclosure of awareness occurs when pre-disclosure market clearing
prices would be “too low” or “too high” given the signal.
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1 Introduction
There is a large literature on how information of traders aggregates in asset markets (see
Vives (2008)). All of these papers assume that traders conceive of all relevant events affecting
the fundamental value of the asset but may have different information about those events.
That is, traders are allowed to have asymmetric information but are assumed to have common
awareness of all relevant events. In this sense, the prior literature just studies the impact
of known unknowns. It is conceivable though that an insider may not just have better
information about some line-item of the balance sheet or profit & loss of the firm whose
security is traded in an asset market but may have also private awareness of the existence of
such line-items. Consequently, they have a much more fine-grained view of private and public
signals about material information of the firm and are able to anticipate the possible arrival
of such information. Other traders may be unaware of the existence of certain particular
events affecting the profitability of the firm. Consequently they cannot even conceive of
information pertaining to them including the possibility that other traders could have such
information. They do not know that they do not know these events. This asymmetric
awareness is studied in the current paper.

We construct a model with CARA utility and normal distributed random variables for
informed trading in a market for a single asset. Such models are more or less standard (e.g.,
Vives (2008, Chapter 4.2.1), Kyle (1989), Hellwig (1980), Grossman and Stiglitz (1980),
Grossman (1976), Admanti (1985), Diamond and Verrecchia (1981)) except that we allow
for different awareness levels among informed traders. That is, some traders may conceive
of some events effecting the terminal value of the stock while others do not. Asymmet-
ric awareness is modelled with a simple version of unawareness structures (Heifetz et al.
(2013b)). We allow for unawareness of events that affect the mean or the variance of the
fundamental value of the asset. Traders compete with demand schedules in an uniform price
double action. There is a continuum of each type of traders. Our model is an example of a
large Bayesian game with unawareness and we derive Bayesian Nash equilibrium (Meier and
Schipper (2014a)). The equilibrium is best understood as a prediction in the medium-run
because every realization is consistent with every trader’s awareness but in the very long
run traders may statically learn that their beliefs are biased. The unique linear equilibrium
strategies in closed form are then compared across awareness levels and their comparative
statics is studied as much as it is feasible. For instance, traders who are aware of more events
affecting the volatility of the fundamental value are less sensitive to price changes. In fact,
those traders may have even upward sloping demand curves if the variance of the additional
term of the fundamental value that they are aware is sufficiently larger than the variance
of the terms that all are aware. These traders become momentum traders (in the sense
of Zhou (2020)) with upward sloping demand linear functions. Market depth with traders
who are aware of more components affecting the volatility of the fundamental is larger than
with just traders who are unaware of such components. W.r.t. price precision, more aware
traders affect price precision differently from more informed traders. It is well known that
the larger the share of informed traders or the better their information, the higher is the
price precision. In contrast, the larger the share of more aware traders and the higher their
awareness level, the lower is price precision because higher awareness means awareness of
additional components contributing to the volatility of the fundamental. Price volatility in
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markets with more aware traders is higher than in markets with less aware traders.
Next we study incentives to disclose awareness to other market participants. We simplify

the model further by assuming that informed traders observe a common signal that is just
interpreted by them differently depending on their individual awareness levels. By elimi-
nating private information, we can focus purely on changes in awareness. The simplified
model is akin to that of Grossman and Stiglitz (1980) except that we allow for asymmet-
ric awareness. Yet, rather than using the model to analyze information acquisition as in
the model by Grossman and Stiglitz (1980) with common awareness, we study endogenous
incentives for informed traders with superior awareness to disclose their awareness to un-
aware traders. We allow aware traders to condition their disclosure decision not just on the
(common) signals but also market clearing prices. We fully characterize the set of signals
and pre-disclosure market clearing prices. For every common signal, disclosure of awareness
occurs when pre-disclosure market clearing prices are either “too low” or “too high” given the
signal.

Our paper contributes to the recent emerging literature on financial markets with un-
awareness. Heifetz et al. (2006) and Heifetz et al. (2013b) show to what extent speculative
betting is possible under unawareness and prove a no-speculative betting theorem under un-
awareness. Galanis (2018) and Meier and Schipper (2014b) show related results. Liu (2017)
studies how awareness interacts with information acquisition in a market for an asset with
one big trader with superior awareness and a continuum of small traders with less awareness.
He shows that under certain assumptions the loss of overall information quality is higher for
moderate awareness asymmetry. Auster and Pavoni (2020) study a search problem in which
many retail investors with limited awareness delegate investment decisions to a few finan-
cial intermediaries. Latter compete for investors by raising awareness of investment options.
They show that under limited competition, intermediaries restrict disclosure to very risky
and very safe investment opportunities. The presence of fully aware investors can have posi-
tive or negative spill-over effects on other investors depending on whether the entire market
is served or not, respectively. Gui et al. (2020) study markets with naive and sophisticated
retail investors. Naive investors can be exploited by a fraudulent monopolistic firm that
offer too-high-to-be-true returns. Consequently, they underestimate the true return of the
financial product. Depending on the fraction of naive and sophisticated investors, the firm
may refrain from offering fraudulent investment opportunities because it does not want to
loose the sophisticated investors. They also study competition among firms. They show
that a honest firm may not want to reduce the number of naive investors too much through
disclosure because the fraudulent competitor may decide to compete for sophisticated in-
vestors instead being content with the naive investors. Finally, Carvajal et al. (2021) study
disclosure of awareness before initial public offerings (IPOs). An entrepreneur may disclose
awareness any time before the IPO in which an investment bank sells stock to a continuum
of heterogeneous traders. While prior research has shown that full disclosure of information
minimizes the IPO, there are conditions under which full disclosure of awareness leads to a
larger IPO as it essentially creates risk sharing opportunities.

This entire literature on financial markets with unawareness is naturally related to the
mostly empirical literature on financial literacy and financial awareness. The empirical lit-
erature has focused more on awareness of assets (e.g., Guiso and Jappelli (2005)) while we
focus on awareness of events affecting the value of an asset. With this focus, our work is
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related to notions of neglected risk. Gennaioli et al. (2012) consider a simple model in which
an investor neglects the least likely of three states and which of the three states is neglected
may change dramatically after observing some signal. Consequently, investors may overre-
act. We do not impose such a limited “budget constraint” on awareness. Our traders may
discover previously neglect risks without neglecting risks they had previously considered.
Finally, our model is related to the literature on financial markets in which traders neglect
some informational content of prices. Zhou (2020) studies a very similar market game to
ours. Different from out approach, he considers common awareness of all random variables
among traders. However, traders differ in their sophistication of strategic reasoning. In
particular, he considers a version of finite level-k reasoning where level-0 traders neglect the
informational content of prices and level-k traders assume that other traders are level-k − 1
traders. Momentum trading with linear strategies may also occur in his model. Moreover,
the response of traders to private signals is the same irrespective of their level of sophistica-
tion. However, they differ in their response to price changes. This is similar to our model
in which traders respond the same to signals irrespective of their awareness type but differ
in response to prices. Eyster et al. (2019) simply assume that traders do not appreciate the
information in prices to an extent fixed by an exogenous parameter. We differ from both
Zhou (2020) and Eyster et al. (2019) in that we do not assume that some traders differ in
their processing of information contained in prices but rather obtain it as a result. We show
that asymmetric awareness of events affecting to the fundamental may lead traders react
differently to prices. In our case, unaware traders in some sense overreact to prices.

Since we study a large competitive market under unawareness with a partially revealing
rational expectations equilibrium, our work is related to the literature on general equilibrium
under unawareness. Modica et al. (1998) study agents’ inability to foresee all states of
nature in an exchange economy. This may naturally lead to bankruptcy albeit unintentional.
They illustrate that an equilibrium may not exist. Kawamura (2005) shows an extension
to economies with production. Teeple (2021) assumes that despite being unaware, agents
are on average correct, an assumption also used in the above mentioned work by Carvajal
et al. (2021). With this assumption, equilibria exist despite unintended defaults and only
partial delivery of asset promises via a pooling institution. In all those general equilibrium
models with unawareness, the notion of equilibrium is somewhat problematic as agents may
be surprised in equilibrium. It is therefore questionable in what sense the outcome can be
understood as the result of an equilibrium learning and discovery process.1 In our model, we
do not assume that unaware traders are on average correct. While market clearing depends
of awareness levels, no matter what the level of awareness of the market participant is, she
can implicitly rationalize any observation in equilibrium because of the presence of noise
traders.

1For a discussion of related issues with equilibrium in games with unawareness, see Schipper (2018).
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2 Model

2.1 CARA-Normal Model with Unawareness

In this section, we outline a model with CARA utility and normal distributed random vari-
ables for informed trading in market for a single asset allowing for different awareness levels
among informed traders. Consider a market with a single risky asset whose fundamental
value is a random variable f̃ = ṽ + w̃ + c with ṽ ∼ N(0, σ2

v), w̃ ∼ N(0, σ2
w) and c 6= 0 being

a constant. Random variables ṽ and w̃ are uncorrelated.
In the baseline model there are noise traders and a continuum of informed traders. Noise

traders trade for exogenous liquidity reasons. Informed traders indexed by i come in four
types distinguished by their awareness levels. Denote by M` the set of traders of awareness
level ` and bym` the measure of traders of awareness level ` for ` ∈ {1, 2, 3, 4}. We normalize
M1 ∪M2 ∪M3 ∪M4 = [0, 1] and m1 +m2 +m3 +m4 = 1.

0. The liquidity traders’ demand for the asset is equal to a random variable z̃ ∼ N(0, σ2
z).

We assume that this random variable is independent of all other primitive random
variables. The expected volume of noise trading E[|z̃|] =

√
2
π
σz is proportional to its

standard deviation σz.

1. Any trader with awareness level 1 is only aware of fundamental random variable ṽ but
unaware of w̃ and c. Thus, she perceives the fundamental to be f̃1 := ṽ. Trader i ∈M1

also receives a private information signal s̃i. She understands that this signal depends
on the fundamental value and an idiosyncratic noise random variable ε̃i. We assume
that ε̃i ∼ N(0, σ2

ε). Moreover, we assume that ε̃i is i.i.d. across all traders i ∈ [0, 1] no
matter their awareness level. Thus, trader i ∈M1 interprets the signal as s̃i := f̃1 + ε̃i.

2. Any trader with awareness level 2 is aware of everything that traders with awareness
level 1 are aware. In addition they are also aware of the constant c. Thus, they perceive
the fundamental value to be f̃2 := ṽ + c. Compared to traders of awareness level 1,
they perceive the same volatility but also a shift in the mean of the fundamental value.
Each trader i ∈ M2 also receives a private information signal that she interprets as
s̃i := f̃2 + ε̃i = ṽ + c+ ε̃i. As before, ε̃i ∼ N(0, σ2

ε) is i.d.d.

3. Any trade with awareness level 3 is aware of everything that traders with awareness
level 1 are aware. In addition they are also aware of random variable w̃. Thus, they
perceive the fundamental value to be f̃3 := ṽ+ w̃. Compared to traders with awareness
level 1, they perceive the same mean but have the full picture of the variance of the
fundamental value. Each trader in i ∈ M3 also receives a private information signal
that she interprets as s̃i := f̃3 + ε̃i = ṽ + w̃ + ε̃i. As before, ε̃i ∼ N(0, σ2

ε) is i.i.d.

4. Any trader with awareness level 4 is aware of everything that other traders are aware.
Thus, they perceive the fundamental value to be f̃4 := ṽ + w̃ + c. I.e., they both have
the full picture of the variance and the mean of the fundamental value. Each trader
in i ∈ M4 also receives a private information signal she interprets as s̃i := f̃4 + ε̃i =
ṽ + w̃ + c+ εi, where as for the other traders ε̃i ∼ N(0, σ2

ε) is i.i.d.
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The idea that traders not being aware of all components of the fundamental value may
be motivated by interpreting the fundamental value as equity of a firm whose stock is traded
in the asset market. When traders form beliefs about the equity, they need to take into
account all line items of the balance sheet and the profit and loss statement. These line
items are then summed up (liabilities and losses with negative sign) into the equity. Thus,
we consider the fundamental value as a sum of random variables. It is realistic that insiders
may not just have better information about some line items but also be aware of some items
that others may not even conceive of. This is our motivation for modelling unawareness of
some terms in the sum of random variables making up the fundamental value.

Note that we assume that all traders receive information signals with the same precision
regardless of the awareness type. We do not want to confound effects due to differences in
awareness by introducing further asymmetries in information.

We assume further that all primitive random variables have finite variance. I.e., σ2
v , σ

2
w, σ

2
ε <

∞. Since εn is also i.i.d., this assumption allows us to invoke the Strong Law of Large Num-
bers to conclude that for all ` ∈ {1, 2, 3, 4},

1

m`

∫
M`

s̃idi =
1

mj

∫
M`

(f` + ε̃i)di
a.s.→ f`. (1)

We follow the notational convention to denote with a tilde a random variable and without
tilde a realization of the random variable. E.g., ṽ is the random variable and v is a realization
of ṽ.

All informed traders have non-random initial endowments which are normalized to zero.
Denote by xi the demand of trader i and p be the price of the asset in the market faced by the
trader. A trader i with awareness level ` perceives her ex post return from trading xi at price
p when the fundamental value is f` to be (f`− p)xi. Since we focus on the differences due to
awareness, we assume that all traders have identical CARA utility function over returns no
matter their awareness level. I.e., i with awareness level ` perceives her ex post utility from
trading xi at price p when the fundamental value is f` to be

U((f` − pn)xi) = −e−ρ(f`−p)xi (2)

where ρ > 0 is the coefficient of absolute risk aversion. Assuming that risk aversion is
unaffected by awareness level is a common assumption in the theoretical literature on un-
awareness (e.g., Heifetz et al. (2013a), Karni and Vierø (2013), Dominiak and Tserenjigmid
(2018) etc.); see Ma and Schipper (2017) for some preliminary experimental evidence with
small risks.

Consistent with unawareness type spaces introduced by Heifetz et al. (2013b), traders
form beliefs about each other’s awareness type subject to their own awareness. The un-
awareness type space is presented in Figure 1. There are four spaces of awareness types that
are ordered by their richness. In the upmost space there are all four awareness types 1, 2,
3, and 4. Awareness type 4 is aware of all types. Thus, the belief of a trader of awareness
type 4 over other awareness types is given simply by the prior m4 = (m1,m2,m3,m4) on
the upmost space. Awareness type 2 is aware that traders can be of her own awareness
type or of lower awareness type, that is awareness type 1. She is unaware of traders can be
awareness type 3 and 4. Yet, her perception is correct in the sense as she views any trader
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Figure 1: Unawareness Type Space

of awareness type 4 as a trader of awareness type 2, i.e., she just misses what awareness type
4 is aware of beyond her own awareness. Moreover, she views any trade of awareness type
3 as a trader of awareness type 1 because she realizes that those traders are not aware of
what she is aware and is unaware of what these traders are aware beyond her own awareness.
Thus, she considers M2

1 = M1 ∪M3 and M2
2 = M2 ∪M4. The belief of a trader of awareness

type 2 over other awareness types is given by the “marginal” of the prior on awareness types
1 and 2, i.e., m2 = (m1 + m3,m2 + m4) on the left space in Figure 1. Projections from
higher spaces to lower spaces are indicated with dashed lines. Similarly, awareness type 3
considers M3

1 = M1 ∪M2 and M3
3 = M3 +M4 and has the belief m3 = (m1 +m2,m3 +m4)

on the right space. Finally, awareness type 1 is unaware of other awareness types and be-
lieves that all traders are of her own awareness type, i.e., M1

1 = M1 ∪M2 ∪M3 ∪M4 and
m1 = m1 +m2 +m3 +m4 = 1. In Figure 1 we also print for easy reference beside each space
how each awareness type perceives the fundamental value of the asset.

All distributional assumptions on primitive random variables are common knowledge
among traders for those random variables of which they are aware of, respectively.

2.2 Market Game and Solution

We consider a simultaneous game with incomplete information and unawareness as follows:
The players are the informed traders. Players have awareness types such that m` is the
measure of players with awareness type ` ∈ {1, 2, 3, 4}. Each player i is also endowed with
an information signal realization si. (Thus, we may view (`, si) as the “type” of player i.)
Player i’s strategy is an awareness-dependent map from her signals to demand functions. A
demand function maps prices to quantities demanded. We write X`(i, si) for the demand
function of trader i with awareness level ` ∈ {1, 2, 3, 4}. X`(i, si)(p) is the quantity demanded
by trader i with awareness level ` when the price is p. We let X1 be defined for all i ∈M1

1 =
M1 ∪ M2 ∪ M3 ∪ M4, X2 be defined for all i ∈ M2

2 = M2 ∪ M4, X3 be defined for all
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i ∈M3
3 = M3 ∪M4, and Xi,4 be defined for all i ∈M4. This is because for instance we need

X1 defined for i ∈ M2 for any trader with awareness level 1 or 3. A strategy is not just a
device for modelling what players might play for any realization of their signal but also an
object of the opponents’ beliefs and perception. For instance, a trader with awareness level
2 perceives any trader in i ∈ M3 as being of awareness level 1. When such a trader forms
beliefs about the behavior of latter, she considers X1 and not X3 since she is unaware of
awareness type 3. We require that X` is continuous both in signals and prices for every i for
which it is defined (when interpreting X` as mapping from signals and prices into quantities
demanded for every i for which it is defined).2

The game proceeds as follows. At the interim stage, after each player i has received her
signal realization si, she submits a demand schedule X`(i, si) to the auctioneer, who is not
considered as a player but part of the institutional rules of the market game. At the same
time, aggregate demands by noise traders are realized z according to z̃ and submitted to the
auctioneer. The auctioneer selects an public market clearing price p using equation:∑

`∈{1,2,3,4}

∫
M`

X`(i, si)(p)di+ z = 0, (3)

if possible. If the market clearing price exists but is not unique, he chooses the one with the
minimum absolute value (which exists since demand schedules are upper hemi-continuous)
and the positive one if there is a negative market price with the same absolute value and
both having the minimum absolute value. If the market clearing price does not exist, then
there is positive excess demand at all prices or negative excess demand at all prices. In the
former case, the auctioneer selects the price p = ∞. All buyers with bounded quantities
obtain negative infinite utility. In latter case, the auctioneer selects the price p = −∞ and
all sellers with bounded quantities obtain negative infinite utility.

While the basic workings of the market are common knowledge among all traders, their
perception of market clearing differs depending on their awareness. A trader with aware-
ness level 4 understands that if a market clearing price exists, it satisfies market clearing
equation (3). In contrast, awareness types 1, 2, and 3 perceive the market clearing price to
satisfy, respectively, ∫

[0,1]

X1(i, si)(p)di+ z = 0 (4)∫
M1∪M3

X1(i, si)(p)di+

∫
M2∪M4

X2(i, si)(p)di+ z = 0 (5)∫
M1∪M2

X1(i, si)(p)di+

∫
M3∪M4

X3(i, si)(p)di+ z = 0 (6)

This is because they can only perceive that traders have their own or a lower awareness
level. Recall that for instance we defined X1 even if i ∈ M4 because as we see i’s strategy

2More generally, we could allow X` to be a nonempty convex-valued correspondence that is continuous
in both signals and prices for i. Then in below description of market clearing, the auctioneer would need to
pick a continuous selection for i and awareness level ` and this selection should be commonly known among
all traders whose awareness level is as least as high `. Since we will focus on linear demand functions anyway,
we restrict the exposition to demand functions. This eases notation.
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at awareness level 1 is important for the perception of market clearing for any trader of
awareness type 1.

Since the perception of market clearing depends on a trader’s awareness level, the market
clearing price and the actual quantities demanded become awareness-dependent random
variables. Each trader of awareness level 1 perceives the price as random variable p̃1(X1).
Each trader of awareness level 2 perceives the price as a random variable p̃2(X2, X1). Each
trader of awareness level 3 perceives the price as a random variable p̃3(X3, X1). Finally, trader
of awareness level 4 perceives the price as a random variable p̃4(X4, X3, X2, X1). With some
abuse of notation, we drop the subscript from the price random variables.

Definition 1 A Bayes-Nash equilibrium of the game with incomplete information and un-
awareness defined above is a profile of strategies (X∗` )`∈{1,2,3,4} such that

(4) for all i ∈M4, si, and X4,

E[U((f̃4 − p̃(X∗4 , X∗3 , X∗2 , X∗1 ))X∗4 (i, si)(p̃(X
∗
4 , X

∗
3 , X

∗
2 , X

∗
1 ))]

≥ E[U((f̃4 − p̃(X∗4 , X∗3 , X∗2 , X∗1 ))X4(i, si)(p̃(X
∗
4 , X

∗
3 , X

∗
2 , X

∗
1 ))] (7)

(3) for all i ∈M3 ∪M4, si, and X3,

E[U((f̃3 − p̃(X∗3 , X∗1 ))X∗3 (i, si)(p̃(X
∗
3 , X

∗
1 ))]

≥ E[U((f̃3 − p̃(X∗3 , X∗1 ))X3(i, si)(p̃(X
∗
3 , X

∗
1 ))] (8)

(2) for all i ∈M2 ∪M4, si, and X2,

E[U((f̃2 − p̃(X∗2 , X∗1 ))X∗2 (i, si)(p̃(X
∗
2 , X

∗
1 ))]

≥ E[U((f̃2 − p̃(X∗2 , X∗1 ))X2(i, si)(p̃(X
∗
2 , X

∗
1 ))] (9)

(1) for all i ∈M1 ∪M2 ∪M3 ∪M4, si, and X1,

E[U((f̃1 − p̃(X∗1 ))X∗1 (i, si)(p̃(X
∗
1 ))] ≥ E[U((f̃1 − p̃(X∗1 ))X1(i, si)(p̃(X

∗
1 ))] (10)

A Bayes-Nash equilibrium is symmetric if for any ` equilibrium strategies X∗` (i, ·) are constant
in i ∈M`.

We interpret the Bayes-Nash equilibrium as Nash equilibrium of a strategic game in which
players are triples (`, i, si), actions are demand functions, and payoff functions are the ex-
pected utility functions.

Note that since there is a continuum of traders, none of them perceives an influence on
the price when deviating to another strategy X`.

In a symmetric Bayes-Nash equilibrium all traders who are perceived to have the same
awareness level play the same equilibrium strategy.

The Bayes-Nash equilibrium is an instance of general Bayes-Nash equilibrium defined for
Bayesian games with unawareness in Meier and Schipper (2014a) except that we allow for a
continuum of players. Generally, Bayes-Nash equilibria may involve surprises in games with
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unawareness (Schipper (2018)). In the present case, it is best interpreted as a prediction in
the medium run. Because of noise traders, any individual observation of own quantity and
market price is not inconsistent with the trader’s awareness level. In the medium run, she can
always rationalize an observation with some realization of the noise trader’s demand. In the
very long run though, when she may be able to learn also about the statistical relationship
between the fundamental, prices, and her own quantities. Consequently, she might find out
eventually that her beliefs over these random variables were wrong. There is still no reason
for her to question whether she is unaware of something. Rather, in the very long run she may
“correct” her beliefs to some biased beliefs akin to an omitted variable bias. The discussion
implies that under unawareness, Bayes-Nash equilibria of the market game specified above
loose the property of (long-run) ex post optimality of Bayes-Nash equilibria in Kyle (1989,
p. 323). Yet, since as we argued the Bayes-Nash equilibrium under unawareness is best
understood as a prediction in the medium-run, it is still a useful solution concept because we
should be interested in predictions of trading by players who face unawareness but have not
yet had sufficient time to learn about the exact statistical relationship between the observed
variables.

A Bayes-Nash equilibrium of the market game can be understood as a particular rational
expectations equilibrium. The rational expectations equilibrium is only partially revealing
because of noise trading. Moreover, it is well-known that fully-revealing rational equilib-
rium cannot be implemented strategically in market games as defined above even without
unawareness (see Vives (2008, Chapter 4.2)).

The following proposition characterizes the symmetric Bayes-Nash equilibrium in linear
strategies. For any random variable ỹ denote by τy the precision of y, i.e., the inverse of the
variance τy := 1

σ2
y
.

Proposition 1 There exists a unique Bayes-Nash equilibrium in linear strategies that is
symmetric. It is characterized by:

1. The equilibrium strategies of informed traders of awareness type 1 are given by

X∗1 (si)(p) = β1si − γ1p (11)

with

β1 =
τεi
ρ

(12)

γ1 =

(
τv + τεi +

(
τεi
ρ

)2
τz

)
ρ

τεiτz + ρ2
(13)

2. The equilibrium strategies of informed traders of awareness type 2 are given by

X∗2 (si)(p) = α2 + β2si − γ2p (14)

with

α2 = c
τvρ

(m2 +m4)τεiτz + ρ2
(15)

β2 = β1 (16)
γ2 = γ1 (17)
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3. The equilibrium strategies of informed traders of awareness type 3 are given by

X∗3 (si)(p) = β3si − γ3p (18)

with

β3 = β1 (19)

γ3 =

(
τv+w + τεi +

(
τεi
ρ

)2
τz

)
ρ

(m3 +m4)τεiτz + ρ2
− τεiτz

(m3 +m4)τεiτz + ρ2
(m1 +m2)γ1 (20)

4. The equilibrium strategies of informed traders of awareness type 4 are given by

X∗4 (si)(p) = α4 + β4si − γ4p (21)

with

α4 = c
(m2 +m4)τv+wτεiτzρ+ τv+wρ

3

(m4τεiτz + ρ2)((m2 +m4)τεiτz + ρ2)
− τv+wτεiτz
m4τεiτz + ρ2

α2 (22)

β4 = β1 (23)
γ4 = γ3 (24)

The proof is contained in the appendix. To characterize the symmetric Bayesian Nash
equilibrium in linear strategies, we make use of the fact that informed traders with lower
awareness levels do not react to informed traders with higher awareness levels since former
are unaware of latter’s awareness. Thus, Bayes-Nash equilibrium is constructed from lower
awareness levels “upward” (Meier and Schipper (2014a, Proposition 2)). Starting with the
lowest awareness, the proof for each level is then similar to the standard proof (e.g. Vives
(2008, Proposition 4.1)) demonstrating that adding asymmetric unawareness to market mi-
crostructure models do not make them intractable. Assuming strategies are linear, we use
the appropriate market clearing condition to derive an equation for the price random vari-
able given equilibrium strategies. Then we use an implication of the projection theorem for
normally distributed variables to obtain solutions for the conditional variance and the expec-
tation of the fundamental (conditional on individual signal realization and the realization of
the price). The expected CARA utility models takes on a mean-variance form. After deriv-
ing first-order conditions and plugging in the terms from the mean-variance form, we identify
the coefficients of the linear strategies. At the next higher awareness level, traders take these
strategies into account when considering market clearing and the information contained in
the price. Yet, they realize that traders at the lower awareness level misinterpret their signal
because they are unaware of some term(s) of the fundamental.

In above characterization of the symmetric linear Bayes-Nash equilibrium, the param-
eter capturing the sensitivity to the signal, β`, is identical across all awareness types ` ∈
{1, 2, 3, 4}. At a first glance, this is somewhat counterintuitive as traders with different
awareness levels may interpret signals differently. The larger the variance of the idiosyn-
cratic noise in the signal and the larger the risk aversion of the traders, the less they react
to the signal. All informed traders have a common understanding of the noise in the signal,
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no matter their awareness level. Although they misperceive components of the fundamental
value and thus terms that additively make up parts of the signal, they do not realize this
because they are unaware of those terms depending on their awareness level. Thus, they all
react similar to the signal.

The parameter capturing the sensitivity to the price is identical across awareness types
1 and 2. This is because compared to awareness type 2, awareness type 1 just misses a
constant term of the fundamental value. Yet, both perceive the variance of the fundamental
to be the same. As idiosyncratic noise is washed out by the Strong Law of Large Numbers
and both also share the same understanding of the noise trader’s demands, both types also
decode the information capturing in the price in the same fashion. (This is shown formally
in the proof contained in the appendix.) The comparative statics of awareness types 1 and
2 sensitivity to price w.r.t. precisions of random variables and coefficient of risk aversion is
stated more formally below. The straightforward proof is omitted.

Proposition 2 In the symmetric linear Bayes-Nash equilibrium:

∂γ1
∂τv

> 0 (25)

∂γ1
∂τεi

> 0 iff τv <
(τεiτz + ρ2)2

τzρ2
(26)

∂γ1
∂τz

< 0 (27)

∂γ1
∂ρ

< 0 iff ρ2 ≥ τεiτz or
{
ρ2 < τεiτz and τv <

(τεiτz + ρ2)2τεi
(τεiτz − ρ2)ρ2

}
(28)

Moreover, γ1 is increasing in the variance of the perceived fundamental v conditional on
information signal and price.

The last claim in Proposition 2 is immediate from the proof of Proposition 1 in the appendix
where we derive the precision (i.e., reciprocal of the variance) of the perceived fundamental,
v, conditional on signal and price,

τv + τεi +

(
τεi
ρ

)2

τz,

as a consequence of the projection theorem applied to normally distributed variables.
Being aware of the constant term in the fundamental affects nevertheless trading strate-

gies through the introduction of an intercept. That is, while informed traders of awareness
level 2 have the same sensitivity to the price and the signal as informed traders of awareness
level 1, former have a shifted version of latter’s linear strategy. The intercept of awareness
type 2’s strategy also depends on the m2

2 := m2 + m4, the measure of informed traders
perceived by awareness type 2 as being of awareness type 2. In a standard model without
unawareness, we would have β2 + α2

c
= γ2 (e.g., Vives (2008, Proposition 4.1)). This does

not hold in our model since traders with awareness level 1 do not consider the fundamental’s
constant component c and traders with awareness level 2 realize this. Only whenm2+m4 = 1
(i.e., no traders are unaware of c), above equality of parameters holds.
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The comparative statics of awareness type 2’s strategy intercept w.r.t. precisions of ran-
dom variables and coefficient of risk aversion is stated more formally below. The straight-
forward proof is omitted.

Proposition 3 In the symmetric linear Bayes-Nash equilibrium:

∂α2

∂c
> 0 (29)

∂α2

∂τv
> 0 (30)

∂α2

∂τεi
< 0 (31)

∂α2

∂τz
< 0 (32)

∂α2

∂ρ
< 0 iff ρ2 ≥ τεiτz(m2 +m4) (33)

∂α2

∂m2
2

< 0 (34)

Awareness type 4 is also aware of the constant term c contributing to the fundamental
value. Consequently, her strategy also features an intercept. The proof on the following
sufficient condition for ordering the intercepts is contained in the appendix.

Proposition 4 In the symmetric linear Bayes-Nash equilibrium, m2 ≤ τv implies α4 < α2.

The identical sensitivity parameter to the price in the linear equilibrium strategy of both
awareness types 1 and 2 differs from the parameters of awareness types 3 and 4 because
latter conceive also of an additional random term of the fundamental for which the price is
informative as well. We can order price sensitivity parameters as follows:

Proposition 5 In symmetric linear Bayes-Nash equilibrium, awareness types 3 and 4 are
less sensitive to price changes than awareness types 1 and 2, i.e., γ3 = γ4 < γ1 = γ2.

The proof is contained in the appendix.
While γ1 = γ2 is always positive, hence awareness types 1 and 2 always have downward

sloping demand functions, the functional form of γ3 and γ4 leaves open the possibility of
upward sloping demand curves. Strategies with upward and downward sloping demand
curves have been called momentum and contrarian strategies, respectively, by Zhou (2020).
Although our model is static, momentum traders’ asset demand is increasing in price similar
to trend-chasing strategies in dynamic markets.

Proposition 6 In the symmetric linear Bayes-Nash equilibrium with a positive share of
awareness type 1 traders, informed traders of awareness type 3 or 4 are momentum traders
if the variance of the additional term of the fundamental that they are aware of is sufficiently
larger than the variance of the term that all awareness types are aware.
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The proof is contained in the appendix.
The comparative statics of γ3 = γ4 w.r.t. parameters of the game are given as follows:

The straightforward proof is omitted.

Proposition 7 In the symmetric linear Bayes-Nash equilibrium:

∂γ3
τv+w

> 0 (35)

∂γ3
τεi

> 0 if τεiτz < ρ2 and τv <
(τεiτz + ρ2)2

τzρ2
(36)

∂γ3
τz

< 0 if τεiτz ≤ ρ2 (37)

∂γ3
ρ

< 0 if τεiτz ≤ ρ2 and sufficiently small τv (38)

As usual we define:

Definition 2 (Market depth) Market depth is the reciprocate of the mean price sensitiv-
ity in the market,

λ1 :=
1

γ1
; for ` = 2, 3, λ` :=

1

(m1 +m5−`)γ1 + (m` +m4)γ`
; λ4 :=

1∑4
`=1m`γ`

.

Intuitively, a market is deep if the effect of noise trading on the price is small. Since the
reciprocate of the mean price sensitivity is the parameter on the noise trader’s demand, it is
a convenient measure of market depth. λ` is the market depth if the informed trader with
the highest awareness level has awareness level `, for ` = 1, 2, 3, 4. Alternatively, λ` can be
interpreted as the market depth perceived by informed traders with awareness level ` (even
though their could be informed traders with awareness level in comparable or higher than
`).

Corollary 1 In the symmetric linear Bayes-Nash equilibrium,

λ1 = λ2 < λ3 = λ4.

Roughly, in markets with informed traders who are aware of additional components
affecting the variance of the fundamental, market depth is higher.

Another commonly used market quality parameter is price precision.

Definition 3 (Price precision) Price precision is defined for ` = 1, 2, 3, 4 by

η1 := τf1+β
2
1τz; for ` = 2, 3, η` := τf`+((m1+m5−`)β1+(m`+m4)β`)

2τz; η4 := τf4+

(
4∑
`=1

m`β`

)2

τz.

We interpret η` as the price precision in a market in which the informed trader with
the highest awareness level has awareness level `, for ` = 1, 2, 3, 4. Alternatively, we can
interpret it as the price precision perceived by an informed trader with awareness level `.
When price precision grows large, prices become more and more revealing. So in some sense,
it is a measure of how close we are to fully revealing rational expectations equilibrium.
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Corollary 2 In symmetric linear Bayes-Nash equilibrium,

η1 = η2 > η3 = η4.

Note how more aware traders affect price precision differently from more informed traders.
It is well known that the larger the share of informed traders and the better their information,
the higher is the price precision. We find the larger the share of more aware traders and the
higher their awareness level, the lower is the price precision. This is because higher awareness
means awareness of additional components contributing to the variance of the fundamental.

We now turn to price volatility as measured by the ex ante variance of the prices. De-
pending on their awareness level, informed traders have different perceptions of the price,
a random variable, since it aggregates information about the fundamental value, which in
turns depends on the informed traders’ awareness level. E.g., p̃(X∗2 , X∗1 ) is the price random
variable emanating from equilibrium strategies of informed traders with awareness levels 2
and 1. This is the price random variable perceived by a trader with awareness level 2. Al-
ternatively, we can interpret this as the actual random variable of the price when we the
market consists of informed traders with awareness level at most 2.

Proposition 8 In symmetric linear Bayes-Nash equilibrium,

V ar(p̃(X∗1 )) = V ar(p̃(X∗2 , X
∗
1 )) = λ21

((
τεi
ρ

)2

σ2
v + σ2

z

)
<

V ar(p̃(X∗3 , X
∗
1 )) = V ar(p̃(X∗4 , X

∗
3 , X

∗
2 , X

∗
1 )) = λ23

((
τεi
ρ

)2

σ2
v +

(
τεi
ρ

)2

σ2
w + σ2

z

)
We omit the proof with the straightforward calculations. Note that the higher price

volatility perceived by traders with awareness levels 3 and 4 is also due to the higher market
depth, which is also affect by variance of the fundamental’s additional component w̃. We
note that the ex ante expected price of traders with awareness levels 1 and 3 is zero while it
is strictly positive for traders with awareness levels 2 and 4. Latter is due to the fact that
they perceive also of the non-zero constant component of the fundamental.

Now suppose that all awareness types have equal measure. I.e., there is an equal share of
awareness types of traders in the market. Which awareness type would trade most in expec-
tations? For each type, the ex ante expected trading quantity follows a normal distribution
since strategies are a linear combination of normally distributed variables. In order to avoid
that demand and supply of a type cancels each other out, we use the absolute value of trading
quantities (e.g., as in Vives (2008, p. 121)). Those follow folded normal distributions.

Definition 4 Ex ante expected trading volume is given by

ν1 := E
[∣∣∣∣∫

M1

X∗1 (s̃i)(p̃(X
∗
1 )di

∣∣∣∣] (39)

ν` := E
[∣∣∣∣∫

M`

X∗` (s̃i)(p̃(X
∗
` , X

∗
1 )di

∣∣∣∣] , for ` = 2, 3 (40)

ν4 := E
[∣∣∣∣∫

M4

X∗4 (s̃i)(p̃(X
∗
4 , X

∗
3 , X

∗
2 , X

∗
1 )di

∣∣∣∣] (41)
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The proof of the following observation is contained in the appendix:

Proposition 9 In symmetric linear Bayes-Nash equilibrium, ν1 < ν2. We are unable to
compare trading volume of other awareness types without further assumptions.

The folded normal distribution of traded quantities of types 2 and 4 has not mean zero.
So the error function needs to be used in when computing the expectations of absolute values
of traded quantities.

We finish this section with observing some comparative statics of market quality w.r.t.
changes in the measures of awareness levels. These observations are straightforward impli-
cations of prior results.

Corollary 3 In linear symmetric Bayes-Nash equilibrium, market depth λ3 and λ4 increases
in m3 +m4. λ1 and λ2 stay constant.

Corollary 4 In linear symmetric Bayes-Nash equilibrium, price precision η1, η2, η3 and η4
stay constant in changes of m1,m2,m3, and m4.

Corollary 5 In linear symmetric Bayes-Nash equilibrium, price volatility of p̃(X∗4 , X∗3 , X∗2 , X∗1 )
and p̃(X∗3 , X∗1 ) increase in m3 +m4. p̃(X∗2 , X∗1 ) and p̃(X∗1 ) stay constant.

3 Incentives to Raise Awareness
In this section, we consider incentives of aware traders to raise the awareness of unaware
traders. Would traders of with more awareness have an incentive to raise the awareness of
traders with less awareness and if yes for which signals and prices?

To answer such a question, we introduce a simplification similar to Grossman and Stiglitz
(1980) (see Vives (2008, Chapter 4.2.2)), namely the signal is now commonly observed among
all traders. While Grossman and Stiglitz (1980) used this assumption to facilitate studying
incentives for individual information acquisition, we use a version with asymmetric awareness
to study the incentives for public disclosure of awareness by insiders. Eliminating private
information allows us to focus on private awareness instead and simplifies the analysis.

Assume that the fundamental value of the asset is f̃ = ṽ + w̃, where ṽ ∼ N (0, σ2
v) is

normally distributed with mean 0 and variance σ2
v . The second component w̃ ∼ N (w̄, σ2

w)
follows a normal distribution with mean w̄ and variance σ2

w. Random variables ṽ and w̃ are
drawn independently.

There is a continuum each for two types of traders in the market: Type A agents are
(A)ware that the distribution of f̃ is the sum of ṽ and w̃. However, type B agents are
unaware of w̃ and consider only ṽ. Denote f̃A := ṽ + w̃ and f̃B := ṽ the fundamental value
as perceived by types A and B, respectively. Agents of type B are comparable to agents of
type 1 in the prior section. Agents of type A are comparable to agents of type 4 in the prior
section (rather than type 3). This is because the additional random variable w̃ that agents
of type A are aware of is now not assumed to necessarily have mean zero. That is, random
variable w̃ in this section corresponds to random variable w̃ + c in the prior section.
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We letMA andMB denote the sets of traders of type A and B, respectively. Analogously,
we denote by mA and mB the measures of the two types of traders, respectively. Assume
mA,mB > 0. We normalize MA ∪MB = [0, 1] and mA +mB = 1.

All agents observe a common signal s. They perceive this signal equal to the sum of their
perceived fundamental value of the asset plus an independent normally distributed noise
ε̃ ∼ N (0, σ2

ε) with mean zero. The interpretation is that all traders observe for instance
the same earnings announcement. However, due to the difference in their awareness, they
interpret the signal in different ways. Type A traders interpret it as s ≡ ṽ + w̃ + ε̃, while
type B traders interpret it as s ≡ ṽ + ε̃ as a result of their unawareness of w̃. Since the
signal is common, nobody has private information. “Informed” traders just differ by their
awareness. The unawareness type space is similar to Figure 1 except that it just consists of
two spaces (see Figure 2).

Figure 2: Unawareness Type Space in the Simplified Model

Again, we assume as in the previous section that all primitive random variables have
finite variance, i.e., σ2

v , σ
2
w, σ

2
ε < ∞. We also continue to assume that the ex post utility

function of each trader is CARA with identical coefficient of absolute risk aversion ρ (see
equation (2)).

In principal, awareness traders may want to disclose awareness at any time: before ob-
serving the common signal, after observing the common signal but before the price emerges,
and during the price-finding market process. While our base-line market model in the previ-
ous section is a simultaneous-move game with rational expectations Bayes-Nash equilibrium,
it is typically understood as a reduced-form model for a dynamic complex market process
so as to make the problem amenable to analysis. In this section, we continue with the
reduced-form approach by allowing aware traders to make signal and price contingent disclo-
sure decisions. After observing the common signal, all traders submit a demand function to
the market maker. However, aware traders may also submit a sealed envelope to the market
maker. This sealed envelope has a price range written on it. The market maker computes
the market clearing price. However, if the market clearing price is in a range written on
the envelope, the market maker is to open the envelope and broadcast the message written
on the letter in it. At that point, informed traders are allowed to “update” their demand
functions.3 Subsequently, the market maker computes the market clearing price and trades

3It would be enough to just allow unaware traders to update their demand functions. Importantly, we
assume that the noise traders’s demand is unaffected by disclosure of awareness. This assumption is justified
when interpreting noise traders strictly as liquidity traders who trade for exogenous reasons.
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are executed.
A strategy of a player assigns to each signal a tuple of functions. For any trader of type A,

i ∈MA, it is a tuple (d(i, s), XN
A (i, s), XD

A (i, s), X(i, s)) where d(i, s) assigns to each signal to
a choice function d(i, s)(p) that maps prices to actions “Disclosure”, D, or “Non-disclosure”,
N . XN

A (i, s) maps the signal to a demand function in the market game after non-disclosure,
XD
A (i, s) maps the signal to a demand function in the market game after disclosure, and

X(i, s) maps the signal to a demand function in the market game perceived by traders of
type B (before disclosure) in which also traders of type A are unaware. For any trader of
type B, i ∈ MB, the strategy is a tuple (XD

B (i, s), X(i, s)) where XD
B (i, s) maps the signal

to a demand function in the market game after disclosure and X(i, s) maps the signal to a
demand function in the market game where all traders are unaware.

With regard to liquidity traders, we assume that noise trading is a non-degenerate random
variable z̃ with mean z̄ 6= 0.

Any unaware traders (all traders of type B before disclosure and all traders in the eyes
of traders B before disclosure) perceive the market clearing price p to satisfy∫

[0,1]

X(i, s)(p)di+ z = 0 (42)

A trader of type A after non-disclosure perceives the market clearing price to satisfy∫
MA

XN
A (i, s)(p)di+

∫
MB

X(i, s)(p)di+ z = 0 (43)

Finally, after disclosure any trader perceives the market clearing price to satisfy∫
MA

XD
A (i, s)(p)di+

∫
MB

XD
B (i, s)(p)di+ z = 0 (44)

Since the perception of market clearing depends on the traders’ awareness levels, the
market clearing price becomes a awareness-dependent random variable that with slight abuse
of notation we denote by p̃(XD

A , X
D
B ) (i.e., market game after disclosure), p̃(XN

A , X) (i.e.,
market game after nondisclosure as perceived by traders of type A), and p̃(X) (i.e., market
game as perceived by traders of type B before disclosure), respectively.

We use symmetric perfect Bayes-Nash equilibrium with linear demand schedules. Com-
pared to the prior section, it determines also the disclosure strategy of traders of type A
and the equilibrium demand schedules of traders of type B after disclosure.4 No matter
the disclosure decision by traders of type A, the market games feature Bayes-Nash equilib-
ria. This is where the idea of perfection plays a role. Note that updating of beliefs after
disclosure/non-disclosure is trivial as disclosure of awareness just changes awareness5 because
signals are common anyway.

Definition 5 A perfect Bayes-Nash equilibrium of the game with incomplete information
and unawareness defined in this section is a profile of strategies, one for each player i ∈ [0, 1],
such that:

4Note that since disclosure is costless, there is no coordination problem, volunteer’s dilemma, or free-riding
among traders of type A w.r.t. whether or not to disclose.

5Upon becoming aware of random variable w̃, traders of type B are assumed to understand that w̃ ∼
N (w̄, σ2

w) and fA = ṽ + w̃.
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(A) For all i ∈ MA and s, the equilibrium strategy (d∗(i, s), XN∗
A (i, s), XD∗

A (i, s), X∗(i, s))
satisfies

(A1)

E[U(f̃B − p)X∗(i, s)(p) | s, p = p̃(X∗)]

≥ E[U(f̃B − p)X(i, s)(p) | s, p = p̃(X∗)] for all X(i, s) (45)

(A2)

E[U(f̃A − p)XD∗
A (i, s)(p) | s, p = p̃(XD∗

A , XD∗
B )]

≥ E[U(f̃A − p)XD
A (i, s)(p) | s, p = p̃(XD∗

A , XD∗
B )] for all XD

A (i, s) (46)

(A3)

E[U(f̃A − p)XN∗
A (i, s)(p) | s, p = p̃(XN∗

A , X∗)]

≥ E[U(f̃A − p)XN
A (i, s)(p) | s, p = p̃(XN∗

A , X∗)] for all XN
A (i, s) (47)

(A4) d∗(i, s)(p = p̃(XN∗
A , X∗)) = D if and only if

E[U(f̃A − p̃(XD∗
A , XD∗

B ))XD∗
A (i, s)(p̃(XD∗

A , XD∗
B )) | s, p = p̃(XN∗

A , X∗)]

≥ E[U(f̃A − p)XN∗
A (i, s)(p) | s, p = p̃(XN∗

A , X∗)] (48)

(B) For all i ∈MB and s, the equilibrium strategy (XD∗
B (i, s), X∗(i, s)) satisfies

(B1)

E[U(f̃B − p)X∗(i, s)(p) | s, p = p̃(X∗)]

≥ E[U(f̃B − p)X(i, s)(p) | s, p = p̃(X∗)] for all X(i, s) (49)

(B2)

E[U(f̃A − p)XD∗
B (i, s)(p) | s, p = p̃(XD∗

A , XD∗
B )]

≥ E[U(f̃A − p)XD
B (i, s)(p) | s, p = p̃(XD∗

A , XD∗
B )] for all XD

B (i, s) (50)

The equilibrium is symmetric if all players with the same awareness level play the same
demand schedule in the respective market games, i.e., for all s, XD∗

B (i, s) = XD∗
A (j, s) for

any i ∈MB and j ∈MA, X∗(i, s) = X∗(j, s) for all i, j ∈ [0, 1], XN∗
A (i, s) = XN∗

A (j, s) for all
i, j ∈MA, and d∗(i, s) = d∗(j, s) for all i, j ∈MA, and trader i ∈MA use identical disclosure
strategies, i.e., i, j ∈MA, d(i, s) = d(j, s) for all s.

The first part of the closed-form characterization of equilibrium is analogous to Propo-
sition 1 in that we characterize Bayes-Nash equilibrium in each of the market games. The
proof of this part of the characterization is simpler compared to the proof of Proposition 1
because as observed in Vives (2008, Chapter 4.2.2), once all traders observe a common signal,
the price transmits no additional information. The price cannot contain more information
than the joint information of traders s. Thus, for all s and p, E[f` | s, p] = E[f` | s] and
V ar[f` | s, p] = V ar[f` | s] for ` ∈ {A,B}. Yet, characterization of the perfect Bayes Nash
equilibrium goes significantly beyond Proposition 1 because we also need to characterize the
equilibrium disclosure decision by traders of type A.

First, we characterize equilibrium demand schedules. The proof is in the appendix.
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Proposition 10 In the unique symmetric perfect Bayes-Nash equilibria in linear demand
schedules, the demand schedules in the respective market games are characterized by: For
any i ∈ [0, 1], common signal s, and price p,

XN∗
A (i, s)(p) = XD∗

A (s)(p) = XD∗
B (i, s)(p) = α + βs− γAp (51)
X∗(i, s)(p) = βs− γBp (52)

with

α =
τv+w
ρ

w̄ (53)

β =
τε
ρ

(54)

γA =
τv+w + τε

ρ
(55)

γB =
τv + τε
ρ

(56)

Note that the equilibrium demand schedules only depend on awareness. The equilibrium
demand schedule of aware traders does not depend on their disclosure decision. Moreover,
equilibrium demand schedules of traders who have been made aware by the disclosure of
aware traders have demand schedules identical to demand schedules of aware traders.

As in the prior section, aware traders are less responsive to the price than unaware traders.
Unaware traders do not perceive the entire volatility of the fundamental value. That’s why
they “overreact” to prices. The short proof is contained in the appendix.

Proposition 11 In unique symmetric perfect Bayes-Nash equilibrium in linear demand
schedules, γA < γB.

Next, we characterize the equilibrium disclosure strategy of traders of type A. The proof
is contained in the appendix.

Proposition 12 In the unique symmetric perfect Bayes-Nash equilibrium in the game with
incomplete information and unawareness described in this section, we have that for all i ∈
MA, d∗(i, s)(p = p̃(XN∗

A , X∗)) = D if and only if (s, p) ∈ K1 ∪K2 defined by

K1 := {(s, p) | ψ1p+ ψ2 ≤ s and p ≤ ψ3} (57)
K2 := {(s, p) | ψ1p+ ψ2 ≥ s and p ≥ ψ3} (58)

with

ψ1 :=
2σ2

v(σ
2
w + σ2

v) + 2σ2
vσ

2
ε +mBσ

2
wσ

2
ε

2σ2
v(σ

2
w + σ2

v)
(59)

ψ2 := −(2−mB)σ2
εw̄

2(σ2
w + σ2

v)
(60)

ψ3 := − σ
2
v

σ2
w

w̄ (61)
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Figure 3: Sets of tuples of signal and pre-disclosure market clearing prices for which disclosure
occurs

Note that ψ1 > 1, ψ2 < 0 if and only if w̄ > 0, and ψ3 < 0 if and only if w̄ > 0. Thus,
the area of signal-price tuples for which traders of type A disclose awareness in equilibrium
is the union of two cones K1 and K2 defined by two lines. Intuitively, for every common
signal, aware traders disclose their awareness if pre-disclosure prices are too high or too low.
We illustrate this in Figure 3 for the case w̄ > 0. (Essentially turn the picture 180◦ for the
case w̄ < 0.)

The proof relies heavily on the form of the conditional expected CARA utility. For every
common signal s, it is quadratic in price and minimized at some price pmin(s). Because of its
quadratic form, for every post-disclosure market price, there exists a symmetric counterpart
that is the same distance from pmins as the post-disclosure price at s but just in the opposite
direction. Conditional expected utility at s with the post-disclosure market price equals
conditional expected utility at s with the symmetric counterpart price (see Figure 4 for
an illustration). Disclosure occurs when the pre-disclosure market clearing price p is in
an intermediate range between the post-disclosure market clearing price and its symmetric
counterpart because in such a case pre-disclosure conditional expected utility is smaller than
post-disclosure conditional expected utility. Since signals are public, a trader of type A
can infer from pre-disclosure market clearing price p the demands from noise traders. This
allows her to fully anticipate the post-disclosure market clearing price. Call it pD(s, p) and
its symmetric counterpart qD(s, p). It turns out that the post-disclosure market price does
not depend on s because for any s and pre-disclosure market price p the post-disclosure
pD(s, p) must be market clearing. Yet, both the post-disclosure market price pD(p) and
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Figure 4: Illustration of quadratic conditional expected utility

its symmetric counterpart qD(s, p) depend on the pre-disclosure market price (through the
inferred demands of noise traders). So disclosure occurs at s if the pre-disclosure market
price p is between pD(p) and qD(s, p) where both pD(p) and qD(s, p) can be described with
linear equations. Solving this linear inequality problem yields the areas defined by K1 and
K2.

A Proofs

Proof of Proposition 1

To characterize the symmetric Bayesian Nash equilibrium in linear strategies, we make use
of the fact that informed traders with lower awareness levels do not react to informed traders
with higher awareness levels since former are unaware of latter’s awareness. Thus, Bayes-
Nash equilibrium is constructed from lower awareness levels “upward” (Meier and Schipper
(2014a, Proposition 2)).

Awareness types 1: Suppose all traders of awareness type 1 use the linear equilibrium strategy
for all si

X∗1 (si)(p) = β1si − γ1p (62)

for any realization of the price p for some β1, γ1 ∈ R with β1, γ1 6= 0.
Note that we can interpret the quantity x̃∗1 = X∗1 (s̃i)(p) as a random variable that is

normally distributed since it is a linear transformation of the normally distributed random
variable s̃i.
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Using the market clearing equation 4, we obtain∫
[0,1]

(β1s̃i − γ1p)di+ z = 0

β1

∫
[0,1]

(f1 + ε̃i)di− γ1p+ z = 0 (63)

Invoking the implication of the Strong Law of Large Numbers (equation (1)) and the defini-
tion of f1 we obtain

β1v − γ1p+ z = 0. (64)

Solving for p we obtain

p =
β1
γ1
v +

1

γ1
z. (65)

Since this holds for any realization of v and z, we can interpret the price is a random variable
that is normally distributed since it is a linear combination of normally distributed random
variables. This is the price random variable that emerges from equilibrium strategies X∗1 .
Thus, we write

p̃(X∗1 ) =
β1
γ1
ṽ +

1

γ1
z̃. (66)

Since strategies are mutually known among informed traders with awareness level 1 in equi-
librium, these informed traders can deduce information contained in the realization of the
price about the fundamental (which they understand as the random variable ṽ) as well as
the amount of noise trading.

Applying a linear transformation to the price random variable p̃(X∗1 ) and denoting by
z̃1 := 1

β1
z̃, we can “isolate” the information contained in the price by defining

h̃1 :=
γ1
β1
p̃1(X

∗
1 ) = ṽ +

1

β1
z̃ = ṽ + z̃1. (67)

Clearly, by the definition of z1 and properties of the variance, σ2
z1

= 1
β2
1
σ2
z .

Denote by τ1 := 1
V ar[ṽ|si,p=p̃(X∗

1 )]
, i.e., the inverse of the variance of ṽ conditional on signal

si and the price p. This is the precision of the fundamental perceived by trader i of awareness
type 1 conditional on the signal realization si and the realization of the price p = p̃(X∗1 ). The
fact that we condition on p = p̃(X∗1 ) means that we condition on the information conveyed
in the price through equilibrium strategies. Clearly, by the definition of random variable h1,
τ1 = 1

V ar[ṽ|si,h1] .
From the projection theorem applied to normally distributed variables (e.g., DeGroot

(1970, Chapter 5), Vives (2008, 10.2.1)) follows that

τ1 = τv + τεi + τz1 (68)
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and

E[ṽ | si, p = p̃(X∗1 )] = E[ṽ | si, h1] =
τεi
τ1
si +

τz1
τ1

γ1
β1
p. (69)

If all informed traders but i use equilibrium strategiesX∗1 , then conditional on information
signal si and price p = p̃(X∗1 ), trading returns (ṽ−p)xi of the informed trader i from quantity
xi is a random variable that is distributed normally. It is well-known (e.g., Danthine and
Moresi (1993, pp. 979–980), Vives (2008, 10.2.4)) that in this case the expected CARA
expected utility conditional on information signal si and and price p = p̃(X∗1 ) takes on the
“mean-variance” form:

E[U((ṽ − p)xi) | si, p = p̃(X∗1 )]

= E[(ṽ − p)xi | si, p = p̃(X∗1 )]− ρ

2
V ar[(ṽ − p)xi | si, p = p̃(X∗1 )]

= xiE[ṽ | si, p = p̃(X∗1 )]− pxi −
ρ

2
x2iV ar[ṽ | si, p = p̃(X∗1 )] (70)

where the last line follows from well-known properties of the expected value and the variance.
Any strategy of informed trader i such that it’s realized quantity is (ex post) optimal

conditional on the price p and information signal si for every price p and information signal si
is (when understood as a demand function) also interim optimal for i given just information
signal si when other informed traders follow strategy X∗1 .

For every p and si, maximizing expected utility given by equation (70) w.r.t. xi yields
the first-order condition

x∗i =
E[ṽ | si, p = p̃(X∗1 )]− p
ρV ar[ṽ | s1, p = p̃(X∗1 )]

(71)

Since the objective function (70) is strictly concave in xi, the first-order condition is also
sufficient for the maximum. Using equations (68) and (69), we rewrite equation (71)

x∗i =

(
τεi
τ1
si +

τz1
τ1

γ1
β1
p− p

)
τ1
ρ

=
τεi
ρ
si −

β1τ1 − γ1τz1
β1ρ

p

= β1si − γ1p

where last line follows from identifying coefficients with

β1 =
τεi
ρ

γ1 =
τ1ρ

τεiτz + ρ2
.

Recall that ε̃i is i.i.d. across informed traders i. Thus, β1 and γ1 are identical for all traders
i and equilibrium strategies are symmetric. This proves the characterization of equilibrium
strategies of awareness types 1.
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Awareness types 2: The step is similar to the previous except that all informed traders of
awareness type 2 take into account equilibrium strategies of informed traders of awareness
type 1. Suppose all traders of awareness type 2 use the linear equilibrium strategy for all si

X∗2 (si)(p) = α2 + β2si − γ2p (72)

for any realization of the price p for some α2, β2, γ2 ∈ R with β2, γ2 6= 0.
Again, note that we can interpret the quantity x̃∗2 = X∗2 (s̃i)(p) as a random variable that

is normally distributed since it is a linear transformation of the normally distributed random
variable s̃i.

Using the market clearing equation (5) and equilibrium strategies of awareness type 1
(equation (11)), we obtain∫

M1∪M3

(β1s̃i − γ1p)di+

∫
M2∪M4

(α2 + β2s̃i − γ2p)di+ z = 0 (73)

Informed traders of awareness type 2 understand that the information signal of informed
traders of awareness 1 should be interpreted as v + c + εi rather than v + εi.6 Thus, we
rewrite previous market clearing equation as∫

M1∪M3

(β1(v + c+ ε̃i)− γ1p)di+

∫
M2∪M4

(α2 + β2(v + c+ ε̃i)− γ2p)di+ z = 0 (74)

β1

∫
M1∪M3

(v + c+ ε̃i)di− (m1 +m3)γ1p

+ (m2 +m4)α2 + β2

∫
M2∪M4

(v + c+ ε̃i)di− (m2 +m4)γ2p+ z = 0 (75)

Invoking again the implication of the Strong Law of Large Numbers (equation (1)), we obtain

(m1 +m3)β1(v + c)− (m1 +m3)γ1p

+ (m2 +m4)α2 + (m2 +m4)β2(v + c)− (m2 +m4)γ2p+ z = 0 (76)

We simplify notation by defining γ12 := (m1+m3)γ1+(m2+m4)γ2 and β12 := (m1+m3)β1+
(m2 +m4)β2 and solve for the price p:

p =
(m2 +m4)α2

γ12
+
β12
γ12

c+
β12
γ12

v +
1

γ12
z. (77)

As in the previous step, we can interpret the price as a random variable that is normally
distributed because it is a linear combination of normally distributed variables. This is
the price random variable that emerges from equilibrium strategies of informed traders of
awareness types 1 and 2 (in addition to noise traders). Thus, we write

p̃(X∗2 , X
∗
1 ) =

(m2 +m4)α2

γ12
+
β12
γ12

c+
β12
γ12

ṽ +
1

γ12
z̃. (78)

6Note that it does not mean that awareness type 2 believes awareness type 1 received si different from
the one they actually did. Awareness type 2 just interprets si received by awareness type 2 differently by
considering the constant c as well.
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Since strategies are mutually known among traders with awareness level 2 in equilibrium,
they can deduce information contained in the realization of the price about the fundamental
and noise trading. Applying a linear transformation to p̃(X∗2 , X∗1 ) and denoting by z̃2 := 1

β12
z̃,

we isolate the information contained in the price by defining

h̃2 :=

(
p̃(X∗2 , X

∗
1 )− m2 +m4

γ12
α2 −

β12
γ12

c

)
γ12
β12

= ṽ +
1

β12
z̃ = ṽ + z̃2 (79)

Denote by τ2 := 1
V ar[ṽ|si,p=p̃(X∗

2 ,X
∗
1 )]

the precision of the fundamental perceived by trader i
of awareness type 2 conditional on signal realization si and the price p = p̃(X∗2 , X

∗
1 ). Clearly,

τ2 = 1
V ar[ṽ|si−c,h2] . From the projection theorem applied to normally distributed variables

(e.g., DeGroot (1970, Chapter 5), Vives (2008, 10.2.1)) follows that

τ2 = τv + τεi + τz2 (80)

and

E[ṽ | si, p = p̃(X∗2 , X
∗
1 )] = E[ṽ | si − c, h2]

=
τεi
τ2

(si − c) +
τz2
τ2
h2

=
τεi
τ2

(si − c) +
τz2
τ2

(
p− m2 +m4

γ12
α2 −

β12
γ12

c

)
γ12
β12

=
τεi
τ2
si +

τz2
τ2

γ12
β12

p− τz2
τ2

m2 +m4

β12
α2 −

τεi + τz2
τ2

c (81)

If all informed traders of awareness type 1 use equilibrium strategies X∗1 and all but i
of awareness type 2 use equilibrium strategies X∗2 , then conditional on information signal si
and price p = p̃(X∗2 , X

∗
1 ), trading returns (ṽ + c− p)xi of informed trader i from quantity xi

is a random variable that is distributed normally. Thus, as it is well-known in this case (e.g.,
Danthine and Moresi (1993, pp. 979–980), Vives (2008, 10.2.4)), CARA expected utility
conditional on information signal si and price p = p̃(X∗2 , X

∗
1 ) takes on the “mean-variance”

form

E[U((ṽ + c− p)xi) | si, p = p̃(X∗2 , X
∗
1 )]

= E[(ṽ + c− p)xi | si, p = p̃(X∗2 , X
∗
1 )]− ρ

2
V ar[(ṽ + c− p)xi | si, p = p̃(X∗2 , X

∗
1 )]

= xiE[ṽ | si, p = p̃(X∗2 , X
∗
1 )] + (c− p)xi −

ρ

2
x2iV ar[ṽ | si, p = p̃(X∗2 , X

∗
1 )] (82)

where the last line follows from well-known properties of the expected value and the variance.
Any strategy of informed trader i such that it’s realized quantity is (ex post) optimal

conditional on the price p and information signal si for every price p and information signal si
is (when understood as a demand function) also interim optimal for i given just information
signal si when other informed traders of awareness type 2 follow strategy X∗2 and informed
traders of awareness type 1 follow strategy X∗1 .
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For every p and si, maximizing expected utility given by equation (82) w.r.t. xi yields
the first-order condition

x∗i =
E[v | si, p = p̃(X∗2 , X

∗
1 )] + c− p

ρV ar[ṽ | s1, p = p̃(X∗2 , X
∗
1 )]

(83)

Since the objective function (82) is strictly concave, the first-order condition is also sufficient
for the maximum. Using equations (80) and (81), we rewrite equation (83)

x∗i =

(
τεi
τ2
si +

τz2
τ2

γ12
β12

p− τz2
τ2

m2 +m4

β12
α2 −

τεi + τz2
τ2

c+ c− p
)
τ2
ρ

=
τ2 − τεi − τz2

ρ
c− τz2

ρ

m2 +m4

β12
α2 +

τεi
ρ
si −

β12τ2 − γ12τz2
β12ρ

p (84)

= α2 + β2si − γ2p (85)

where last line follows from identifying coefficients with

α2 = c
τvρ

(m2 +m4)τεiτz + ρ2
(86)

β2 =
τεi
ρ

γ2 =
τ2ρ

τεiτz + ρ2

using the fact that τz2 = β2
12τz. Note also that τ2 = τ1 follows from β2 = β1. Recall that

ε̃i is i.i.d. across informed traders i. Thus, α2, β2 and γ2 are identical for all traders with
awareness level 2. From Step 1 we concluded that also equilibrium strategies are identical for
all traders with awareness level 1. Thus, the equilibrium of the partial game with awareness
types 1 and 2 only is symmetric. This proves the characterization of equilibrium strategies
of awareness types 2.

Awareness types 3: The step is similar the previous two steps except that all informed traders
of awareness type 3 take into account equilibrium strategies of informed traders of awareness
type 1. Suppose all traders of awareness type 3 use the linear equilibrium strategy for all si

X∗3 (si)(p) = β3si − γ3p (87)

for any realization of the price p for some β3, γ3 ∈ R with β3, γ3 6= 0.
Again, note that we can interpret the quantity x̃∗3 = X∗3 (s̃i)(p) as a random variable that

is normally distributed since it is a linear transformation of the normally distributed random
variable s̃i.

Using the market clearing equation (6) and equilibrium strategies of awareness type 1
(equation (11)), we obtain∫

M1∪M2

(β1s̃i − γ1p)di+

∫
M3∪M4

(β3s̃i − γ3p)di+ z = 0 (88)
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Informed traders of awareness type 3 understand that the information signal of informed
traders of awareness 1 should be interpreted as v + w + εi rather than v + εi. Thus, we
rewrite previous market clearing equation as∫

M1∪M2

(β1(v + w + ε̃i)− γ1p)di+

∫
M3∪M4

(β3(v + w + ε̃i)− γ3p)di+ z = 0 (89)

β1

∫
M1∪M2

(v + w + ε̃i)di− (m1 +m2)γ1p

+ β3

∫
M3∪M4

(v + w + ε̃i)di− (m3 +m4)γ3p+ z = 0 (90)

Invoking again the implication of the Strong Law of Large Numbers (equation (1)), we obtain

(m1 +m2)β1(v + w)− (m1 +m2)γ1p

+ (m3 +m4)β3(v + w)− (m3 +m4)γ3p+ z = 0 (91)

We simplify notation by defining γ13 := (m1+m2)γ1+(m3+m4)γ3 and β13 := (m1+m2)β1+
(m3 +m4)β3 and solve for the price p:

p =
β13
γ13

(v + w) +
1

γ13
z. (92)

As in the previous step, we can interpret the price as a random variable that is normally
distributed because it is a linear combination of normally distributed variables. This is
the price random variable that emerges from equilibrium strategies of informed traders of
awareness types 1 and 3 (in addition to noise traders). Thus, we write

p̃(X∗3 , X
∗
1 ) =

β13
γ13

(ṽ + w̃) +
1

γ13
z̃. (93)

Since strategies are mutually known among traders with awareness level 3 in equilibrium,
they can deduce information contained in the realization of the price about the fundamental
and noise trading. Applying a linear transformation to p̃(X∗3 , X∗1 ) and denoting by z̃3 := 1

β13
z̃,

we isolate the information contained in the price by defining

h̃3 :=
γ13
β13

p̃(X∗3 , X
∗
1 ) = ṽ + w̃ +

1

β13
z̃ = ṽ + w̃ + z̃3 (94)

Denote by τ3 := 1
V ar[ṽ+w̃|si,p=p̃(X∗

3 ,X
∗
1 )]

the precision of the fundamental perceived by trader
i of awareness type 2 conditional on signal realization si and the price p = p̃(X∗3 , X

∗
1 ). Clearly,

τ3 = 1
V ar[ṽ+w̃|si,h3] . From the projection theorem applied to normally distributed variables

(e.g., DeGroot (1970, Chapter 5), Vives (2008, 10.2.1)) follows that

τ3 = τv+w + τεi + τz3 (95)
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and

E[ṽ + w̃ | si, p = p̃(X∗3 , X
∗
1 )] = E[ṽ + w̃ | si, h3]

=
τεi
τ3
si +

τz3
τ3
h3

=
τεi
τ3
si +

τz3
τ3

γ13
β13

p (96)

If all informed traders of awareness type 1 use equilibrium strategies X∗1 and all but i
of awareness type 3 use equilibrium strategies X∗3 , then conditional on information signal si
and price p = p̃(X∗3 , X

∗
1 ), trading returns (ṽ+ w̃− p)xi of informed trader i from quantity xi

is a random variable that is distributed normally since it is a linear combination of normally
distributed random variables. Thus, as it is well-known in this case (e.g., Danthine and
Moresi (1993, pp. 979–980), Vives (2008, 10.2.4)), CARA expected utility conditional on
information signal si and price p = p̃(X∗3 , X

∗
1 ) takes on the “mean-variance” form

E[U((ṽ + w̃ − p)xi) | si, p = p̃(X∗3 , X
∗
1 )]

= E[(ṽ + w̃ − p)xi | si, p = p̃(X∗3 , X
∗
1 )]− ρ

2
V ar[(ṽ + w̃ − p)xi | si, p = p̃(X∗3 , X

∗
1 )]

= xiE[ṽ + w̃ | si, p = p̃(X∗3 , X
∗
1 )] + pxi −

ρ

2
x2iV ar[ṽ + w̃ | si, p = p̃(X∗3 , X

∗
1 )] (97)

where the last line follows from well-known properties of the expected value and the variance.
Any strategy of informed trader i such that it’s realized quantity is (ex post) optimal

conditional on the price p and information signal si for every price p and information signal si
is (when understood as a demand function) also interim optimal for i given just information
signal si when other informed traders of awareness type 3 follow strategy X∗3 and informed
traders of awareness type 1 follow strategy X∗1 .

For every p and si, maximizing expected utility given by equation (97) w.r.t. xi yields
the first-order condition

x∗i =
E[ṽ + w̃ | si, p = p̃(X∗3 , X

∗
1 )]− p

ρV ar[ṽ + w̃ | s1, p = p̃(X∗3 , X
∗
1 )]

(98)

Since the objective function (97) is strictly concave in xi, the first-order condition is also
sufficient for the maximum. Using equations (95) and (96), we rewrite equation (98)

x∗i =

(
τεi
τ3
si +

τz3
τ3

γ13
β13

p− p
)
τ3
ρ

=
τεi
ρ
si −

β13τ3 − γ13τz3
β13ρ

p (99)

= β3si − γ3p (100)

where last line follows from identifying coefficients with

β3 =
τεi
ρ

γ3 =

(
τv+w + τεi +

(
τεi
ρ

)2
τz

)
ρ

(m3 +m4)τεiτz + ρ2
− (m1 +m2)τεiτz

(m3 +m4)τεiτz + ρ2
γ1 (101)
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using the fact that τz3 = β2
13τz. Recall that ε̃i is i.i.d. across informed traders i. Thus, β3

and γ3 are identical for all traders with awareness level 3. From Step 1 we concluded that
also equilibrium strategies are identical for all traders with awareness level 1. Thus, the
equilibrium of the partial game with awareness types 1 and 3 only is symmetric. This proves
the characterization of equilibrium strategies of awareness types 3.

Awareness types 4: The step is similar to the previous steps except that all informed traders
of awareness type 4 take into account equilibrium strategies of informed traders with lower
awareness levels. Suppose all traders of awareness type 4 use the linear equilibrium strategy
for all si

X∗4 (si)(p) = α4 + β4si − γ4p (102)

for any realization of the price p for some α4, β4, γ4 ∈ R with β4, γ4 6= 0.
Again, note that we can interpret the quantity x̃∗4 = X∗4 (s̃i)(p) as a random variable that

is normally distributed since it is a linear transformation of the normally distributed random
variable s̃i.

Using the market clearing equation (5) and equilibrium strategies of awareness type 1
(equation (11)), we obtain∫

M1

(β1s̃i − γ1p)di+

∫
M2

(α2 + β2s̃i − γ2p)di

+

∫
M3

(β3s̃i − γ3p)di+

∫
M4

(α4 + β4s̃i − γ4p)di+ z = 0 (103)

Informed traders of awareness type 4 understand that the information signal of informed
traders of lower awareness levels should be interpreted as v + w + c + εi. Thus, we rewrite
previous market clearing equation as∫

M1

(β1(v + w + c+ ε̃i)− γ1p)di+

∫
M2

(α2 + β2(v + w + c+ ε̃i)− γ2p)di

+

∫
M3

(β3(v + w + c+ ε̃i)− γ3p)di+

∫
M4

(α4 + β4(v + w + c+ ε̃i)− γ4p)di+ z = 0(104)

β1

∫
M1

(v + w + c+ ε̃i)di+m2α2 + β2

∫
M2

(v + w + c+ ε̃i)di+ β3

∫
M3

(v + w + c+ ε̃i)di

+ m4α4 + β4

∫
M4

(v + w + c+ ε̃i)di− p
4∑
`=1

m`γ` + z = 0 (105)

Invoking again the implication of the Strong Law of Large Numbers (equation (1)), we obtain
that aggregate excess demand is equal to zero:

m2α2 +m4α4 + (v + w + c)
4∑
`=1

m`β` − p
4∑
`=1

m`γ` + z = 0 (106)
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We simplify notation by defining α14 := m2α2+m4α4, β14 :=
∑4

`=1m`β`, and7 γ14 :=
∑4

`=1 =
m`γ` and solve for the price p:

p =
α14

γ14
+
β14
γ14

c+
β14
γ14

v +
β14
γ14

w +
1

γ14
z. (107)

As in the previous steps, we can interpret the price as a random variable that is normally
distributed because it is a linear combination of normally distributed variables. This is
the price random variable that emerges from equilibrium strategies of informed traders (in
addition to noise traders). Thus, we write

p̃(X∗4 , X
∗
3 , X

∗
2 , X

∗
1 ) =

α14

γ14
+
β14
γ14

c+
β14
γ14

ṽ +
β14
γ14

w̃ +
1

γ14
z̃. (108)

Since strategies are mutually known among traders with awareness level 4 in equilibrium,
they can deduce information contained in the realization of the price about the fundamental
and noise trading. Applying a linear transformation to p̃(X∗4 , X∗3 , X∗2 , X∗1 ) and denoting by
z̃4 := 1

β14
z̃, we isolate the information contained in the price by defining

h̃4 :=

(
p̃(X∗4 , X

∗
3 , X

∗
2 , X

∗
1 )− α14

γ14
− β14
γ14

c

)
γ14
β14

= ṽ + w̃ +
1

β14
z̃ = ṽ + w̃ + z̃4. (109)

Denote by τ4 := 1
V ar[ṽ+w̃|si,p=p̃(X∗

4 ,X
∗
3 ,X

∗
2 ,X

∗
1 )]

the precision of the fundamental perceived
by trader i of awareness type 4 conditional on signal realization si and the price p =
p̃(X∗4 , X

∗
3 , X

∗
2 , X

∗
1 ). Clearly, τ4 = 1

V ar[ṽ+w̃|si−c,h4] . From the projection theorem applied to
normally distributed variables (e.g., DeGroot (1970, Chapter 5), Vives (2008, 10.2.1)) fol-
lows that

τ4 = τv+w + τεi + τz4 (110)

and

E[ṽ + w̃ | si, p = p̃(X∗4 , X
∗
3 , X

∗
2 , X

∗
1 )]

= E[ṽ + w̃ | si − c, h4]
=

τεi
τ4

(si − c) +
τz4
τ4
h4

=
τεi
τ4

(si − c) +
τz4
τ4

(
p− α14

γ14
− β14
γ14

c

)
γ14
β14

=
τεi
τ4
si +

τz4
τ4

γ14
β14

p− τz4
τ4

α14

β14
− τεi + τz4

τ4
c (111)

If all informed traders of lower awareness types use equilibrium strategiesX∗1 , X∗2 , andX∗3 ,
respectively, and all informed traders but i of awareness type 4 use equilibrium strategies X∗4 ,
then conditional on information signal si and price p = p̃(X∗4 , X

∗
3 , X

∗
2 , X

∗
1 ), trading returns

(ṽ+w̃+c−p)xi of informed trader i from quantity xi is a random variable that is distributed
7The subscript “14” stands for awareness levels 1 to 4.
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normally. Thus, as it is well-known in this case (e.g., Danthine and Moresi (1993, pp. 979–
980), Vives (2008, 10.2.4)), CARA expected utility conditional on information signal si and
price p = p̃(X∗4 , X

∗
3 , X

∗
2 , X

∗
1 ) takes on the “mean-variance” form

E[U((ṽ + w̃ + c− p)xi) | si, p = p̃(X∗4 , X
∗
4 , X

∗
2 , X

∗
1 )]

= E[(ṽ + w̃ + c− p)xi | si, p = p̃(X∗4 , X
∗
3 , X

∗
2 , X

∗
1 )]

−ρ
2
V ar[(ṽ + w̃ + c− p)xi | si, p = p̃(X∗4 , X

∗
3 , X

∗
2 , X

∗
1 )]

= xiE[ṽ + w̃ | si, p = p̃(X∗4 , X
∗
3 , X

∗
2 , X

∗
1 )] + (c− p)xi

−ρ
2
x2iV ar[ṽ + w̃ | si, p = p̃(X∗4 , X

∗
3 , X

∗
2 , X

∗
1 )] (112)

where the last line follows from well-known properties of the expected value and the variance.
Any strategy of informed trader i such that it’s realized quantity is (ex post) optimal

conditional on the price p and information signal si for every price p and information signal si
is (when understood as a demand function) also interim optimal for i given just information
signal si when other informed traders of awareness type 4 follow strategy X∗4 and informed
traders of lower awareness types follow strategies X∗1 , X∗2 , and X∗3 , respectively.

For every p and si, maximizing expected utility given by equation (112) w.r.t. xi yields
the first-order condition

x∗i =
E[ṽ + w̃ | si, p = p̃(X∗4 , X

∗
3 , X

∗
2 , X

∗
1 )] + c− p

ρV ar[ṽ + w̃ | s1, p = p̃(X∗4 , X
∗
3 , X

∗
2 , X

∗
1 )]

(113)

Since the objective function (112) is strictly concave in xi, the first-order condition is also
sufficient for the maximum. Using equations (110) and (111), we rewrite equation (113)

x∗i =

(
τεi
τ4
si +

τz4
τ4

γ14
β14

p− τz4
τ4

α14

β12
− τεi + τz4

τ4
c+ c− p

)
τ4
ρ

=
τ4 − τεi − τz4

ρ
c− τz4

ρ

α14

β14
+
τεi
ρ
si −

β14τ4 − γ14τz4
β14ρ

p (114)

= α4 + β4si − γ4p (115)

where last line follows from identifying coefficients with

α4 = c
(m2 +m4)τv+wτεiτzρ+ τv+wρ

3

((m2 +m4)τεiτz + ρ2)(m4τεiτz + ρ2)
−
(
c

τvρ

(m2 +m4)τεiτz + ρ2

)(
τv+wτεiτz

m4τεiτz + ρ2

)
(116)

= c
(m2 +m4)τv+wτεiτzρ+ τv+wρ

3

((m2 +m4)τεiτz + ρ2)(m4τεiτz + ρ2)
− α2

τv+wτεiτz
m4τεiτz + ρ2

(117)

β4 =
τεi
ρ

γ4 =

(
τv+w + τεi +

(
τεi
ρ

)2
τz

)
ρ

m4τεiτz + ρ2
− τεiτz
m4τεiτz + ρ2

3∑
`=1

m`γ`

using the fact that τz4 = β2
14τz. Recall that ε̃i is i.i.d. across informed traders i. Thus, α4, β4

and γ4 are identical for all traders with awareness level 4.
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What remains to be shown is that γ4 = γ3. First, note that τ4 = τ3. Rewriting above
equations for γ3 and γ4

((m3 +m4)τεiτz + ρ2)γ3 = τ3ρ− τεiτz(m1 +m2)γ1 (118)
(m4τεiτz + ρ2)γ4 = τ3ρ− τεiτz(m1 +m2)γ1 − τεiτzm3γ3 (119)

Subtracting equation (118) from equation (119) yields

(m4τεiτz + ρ2)γ4 − ((m3 +m4)τεiτz + ρ2)γ3 = −τεiτzm3γ3 (120)
(m4τεiτz + ρ2)γ4 = (m4τεiτz + ρ2)γ3 (121)

γ4 = γ3 (122)

From the previous steps we concluded that for awareness level, equilibrium strategies
are identical for all traders with that awareness level. Thus, the equilibrium is symmetric.
This proves the characterization of equilibrium strategies of awareness types 4 and completes
the characterization of linear symmetric Bayes-Nash equilibrium of the market game with
unawareness. �

Proof of Proposition 4

Define

A := c
(m2 +m4)τv+wτεiτzρ+ τv+wρ

3

(m2 +m4)τεiτz + ρ2

D := m4τεiτz + ρ2

B := τv+wτεiτz

Then
α4 =

A

D
− B

D
α2.

It follows

α4 < α2

A < (B +D)α2

c
((m2 +m4)τv+wτεiτz + τv+wρ

2)ρ

(m2 +m4)τεiτz + ρ2
< (τv+wτεiτz +m4τεiτz + ρ2)α2

c
((m2 +m4)τv+wτεiτz + τv+wρ

2)ρ

(m2 +m4)τεiτz + ρ2
< (τv+wτεiτz +m4τεiτz + ρ2)c

τvρ

(m2 +m4)τεiτz + ρ2

(m2 +m4)τv+wτεiτz + τv+wρ
2 < (τv+wτεiτz +m4τεiτz + ρ2)τv

m4τv+wτεiτz + τv+wρ
2 +m2τv+wτεiτz < m4τvτεiτz + τvρ

2 + τvτv+wτετz

Observe that τv+w = 1
σ2
v+σ

2
w
< τv = 1

σ2
v
. Thus, a sufficient condition for the inequality to hold

is m2 ≤ τv. �
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Proof of Proposition 5

From Proposition 1 we know γ3 = γ4 and γ1 = γ2. We claim γ3 < γ1. This is equivalent to

τ3ρ

(m3 +m4)τεiτz + ρ2
− τεiτz

(m3 +m4)τεiτz + ρ2
(m1 +m2)γ1 < γ1

τ3ρ− τεiτz(m1 +m2)γ1 < ((m3 +m4)τεiτz + ρ2)γ1

τ3ρ < (τεiτz + ρ2)γ1

τ3ρ < (τεiτz + ρ2)
τ1ρ

(τεiτz + ρ2)

τv+w + τεi +

(
τεi
ρ

)2

τz < τv + τεi +

(
τεi
ρ

)2

τz

τv+w < τv
1

σ2
v + σ2

w

<
1

σ2
v

�

Proof of Proposition 6

Using the characterization of Proposition 1,

γ3 < 0
τ3ρ

(m3 +m4)τεiτz + ρ2
<

τεiτz
(m3 +m4)τεiτz + ρ2

(m1 +m2)γ1

τ3ρ < (m1 +m2)τεiτz
τ1ρ

τεiτz + ρ2

τ3
τ1

<
(m1 +m2)τεiτz
τεiτz + ρ2

Precisions τ3 and τ1 differ just by τv+w and τv, respectively. Note that by definition τv+w =
1

σ2
v+σ

2
w
< τv = 1

σ2
v
. If σ2

w is sufficiently larger than σ2
v , then the inequality is satisfied.

The argument is analogous for γ4. �

Proof of Proposition 9

Awareness level 1: From the proof of Proposition 1 follows

E
[∫

M1

X∗1 (s̃i)(p̃(X
∗
1 ))di

]
= E[m1(β1ṽ − γ1p̃(X∗1 ))]

= m1β1E[ṽ]−m1γ1
β1
γ1

E[ṽ] +m1
1

γ1
E[z̃] = 0.

We observe that
∫
M1
X∗1 (s̃i)(p̃(X

∗
1 ))di follows a normal distribution, which, as we just com-

puted, has mean zero.
∣∣∣∫M1

X∗1 (s̃i)(p̃(X
∗
1 ))di

∣∣∣ follows a folded normal distribution. Thus, by
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standard properties of the folded normal distribution,

ν1 = E
[∣∣∣∣∫

M1

X∗1 (s̃i)(p̃(X
∗
1 ))di

∣∣∣∣]
= E[|m1(β1ṽ − γ1p̃(X∗1 ))|]

=

√
2

π

√
V ar(m1(β1ṽ − γ1p̃(X∗1 )))

=

√
2

π

√
V ar(m1z̃)

=

√
2

π
m1σz

Awareness level 2: From the proof of Proposition 1 follows

E
[∫

M2

X∗2 (s̃i)(p̃(X
∗
2 , X

∗
1 ))di

]
= E[m2(α2 + β1(ṽ + c)− γ1p̃(X∗2 , X∗1 ))]

= m2α2 +m2β1c−m2(m2 +m4)α2 −m2β1c

= m2(1−m2 −m3)α2 := µ

Observe µ > 0. We also observe that
∫
M2
X∗2 (s̃i)(p̃(X

∗
2 , X

∗
1 ))di is normally distributed but

not with mean zero. Define also

σ2 := V ar

[∫
M2

X∗2 (s̃i)(p̃(X
∗
2 , X

∗
1 ))di

]
(123)

A := e−
µ2

2σ2 (124)

B := µ
(

1− 2Φ
(
−µ
σ

))
(125)

Observe that A > 1 and B > 0. By standard properties of the folded normal distribution,

v2 = E
[∣∣∣∣∫

M2

X∗2 (s̃i)(p̃(X
∗
2 , X

∗
1 ))di

∣∣∣∣]
= E[|m2(α2 + β2ṽ − γ2p̃(X∗2 , X∗1 ))|]

=

√
2

π

√
V ar(m2(α2 + β2ṽ − γ2p̃(X∗2 , X∗1 )))A+B

=

√
2

π

√
V ar(m2(α2 − (m2 +m4)α2 − β12c− z̃))A+B

=

√
2

π
m2σzA+B

Since m1 = m2, A > 1 and B > 0, ν1 < ν2.
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Awareness level 3: From the proof of Proposition 1 follows

E
[∫

M3

X∗3 (s̃i)(p̃(X
∗
3 , X

∗
1 ))di

]
= E[m3(β1(ṽ + w̃)− γ1p̃(X∗3 , X∗1 ))]

= E[m3(β3(w̃ + w̃)− γ3
β13
γ13

(ṽ + w̃)− γ3
γ13

z̃)] = 0

By standard properties of the folded normal distribution,

v3 = E
[∣∣∣∣∫

M3

X∗2 (s̃i)(p̃(X
∗
3 , X

∗
1 ))di

∣∣∣∣]
= E[|m3(β1(ṽ + w̃)− γ1p̃(X∗3 , X∗1 ))|]

=

√
2

π

√
V ar

[
m3β3ṽ +m3β3w̃ −m3γ3

β3
γ13

ṽ −m3γ3
β3
γ13

w̃ −m3γ3
1

γ13
z̃

]

=

√
2

π

√
m2

3β
2
3

(
1− γ3

γ13

)2

σ2
v +m2

3β
2
3

(
1− γ3

γ13

)2

σ2
w +m2

3

(
γ3
γ13

)2

σ2
z

Since γ3 < γ1 by Proposition 5 and thus γ3 < γ13, we are unable to compare v3 with v1 and
v2 without further assumptions.

Awareness level 4: From the proof of Proposition 1 follows

E
[∫

M4

X∗4 (s̃i)(p̃(X
∗
4 , X

∗
3 , X

∗
2 , X

∗
1 ))di

]
= E[m4(α4 + β4(ṽ + w̃ + c)− γ4p̃(X∗4 , X∗3 , X∗2 , X∗1 ))]

= m4α4 +m4β1c−m4
γ4
γ14

α14 −m4
γ4
γ14

β1c

= m4

(
1−m4

γ4
γ14

)
α4 +m4β1

(
1− γ4

γ14

)
c−m2m4

γ4
γ14

α2 := ζ

In general, we may have ζ 6= 0. Define also

ς2 := V ar

[∫
M4

X∗4 (s̃i)(p̃(X
∗
4 , X

∗
3 , X

∗
2 , X

∗
1 ))di

]
(126)

C := e
− ζ2

2ς2 (127)

D := ζ

(
1− 2Φ

(
−ζ
ς

))
(128)

By standard properties of the folded normal distribution,

v4 = E
[∣∣∣∣∫

M4

X∗4 (s̃i)(p̃(X
∗
4 , X

∗
3 , X

∗
2 , X

∗
1 ))di

∣∣∣∣]
= E[|m4(α4 + β4ṽ + β4w̃ + β4c− γ4p̃(X∗2 , X∗1 ))|]

=

√
2

π

√
V ar

[
m4β1

(
1− γ4

γ14

)
ṽ +m4β1

(
1− γ4

γ14

)
w̃ −m4

γ4
γ14

z̃

]

=

√
2

π

√
m2

4β
2
1

(
1− γ4

γ14

)2

σ2
v +m2

4β
2
1

(
1− γ4

γ14

)2

σ2
w −m2

4

γ24
γ214

σ2
zC +D
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We are unable to compare ν4 with ν1, ν2, and ν3 without further assumptions. �

Proof of Proposition 10

Market game as perceived by traders of type B before disclosure: In the market game per-
ceived by traders of type B before disclosure, all traders are of awareness type B. Suppose
they use the linear equilibrium strategy defined by for all s

X∗(s)(p) = βBs− γBp (129)

for any realization of the price p and some βB, γB ∈ R with βB, γB 6= 0.
We can interpret the quantity x̃∗ = X∗(s̃)(p) as a random variable that is normally

distributed since it is a linear transformation of the normally distributed random variables.
Using the market clearing condition in equation (42), we obtain

βBs− γBp+ z = 0.

Solving for p, we obtain

p =
βB
γB
s+

1

γB
z. (130)

Since this holds for all s and z, we interpret the price as a random variable that is normally
distributed since it is a linear combination of normally distributed random variables. Since
the price random variable emerges from equilibrium demand functions X∗, we write

p̃(X∗) =
βB
γB
s̃+

1

γB
z̃. (131)

Observe that the price does not contain more information about v than the common signal.
Thus, E[v | s, p = p̃(X∗)] = E[v | s] and V ar[v | s, p = p̃(X∗)] = V ar[v | s].

From the projection theorem applied to normally distributed variables (e.g., DeGroot
(1970, Chapter 5), Vives (2008, 10.2.1)) follows that

1

V ar[v | s, p = p̃(X∗)]
=

1

V ar[ṽ | s]
=: τB = τv + τε (132)

and

E[v | s, p = p̃(X∗)] = E[ṽ | s] =
τε
τB
s (133)

If all non-noise traders but i use equilibrium demand schedules X∗, then conditional on
the common signal s and price p = p̃(X∗), trading returns (ṽ−p)xi of trader i from quantity
xi is a random variable that is distributed normally. It is well-known that in such a case (e.g.,
Danthine and Moresi (1993, pp. 979–980), Vives (2008, 10.2.4)) that the expected CARA
utility conditional on the common signal s and price p = p̃(X∗) takes the “mean-variance”
form

E[U((ṽ − p)xi) | s, p = p̃(X∗)]

= E[(ṽ − p)xi | s, p = p̃(X∗)]− ρ

2
V ar[(ṽ − p)xi | s, p = p̃(X∗)]

= xiE[ṽ | s, p = p̃(X∗)]− pxi −
ρ

2
x2iV ar[ṽ | s, p = p̃(X∗)] (134)
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where the last line follows from well-known properties of the expected value and the variance.
Any demand schedule of trader i such that it’s realized quantity is (ex post) optimal

conditional on the price p and common signal s for every p and s, is when understood as
a demand function also interim optimal for i given just the common signal s when other
non-noise traders use the equilibrium demand schedule X∗. For every p and s, maximizing
expected utility given in equation (134) w.r.t. xi yields the first-order condition

x∗i =
E[ṽ | s, p = p̃(X∗)]− p
ρV ar[ṽ | s, p = p̃(X∗)]

. (135)

Since the objective function is strictly concave in xi, the first-order condition is also sufficient
for the maximum. Substituting equations (132) and (133) into equation (135) yields

x∗i = βBs− γBp (136)

with coefficients

βB =
τε
ρ

(137)

γB =
τv + τε
ρ

. (138)

This proves the characterization of the equilibrium demand functions in the market game of
the less expressive tree.

Market game perceived by traders of type A under non-disclosure: Under non-disclosure,
all traders of type A in MA take into account that all traders in MB remain unaware. Thus,
they take into account that traders in MB use equilibrium demand functions derived above.
Suppose all traders of type A use linear equilibrium demand functions for all s

XN∗
A (s)(p) = αNA + βNA s− γNA p (139)

for any realization of the price p and some αNA , βNA , γNA ∈ R with βNA , γNA 6= 0.
We can interpret the quantity x̃N∗A = XN∗

A (s̃)(p) as a random variable that is normally
distributed since it is a linear transformation of the normally distributed random variables.

Using the market clearing condition of equation (43) and equilibrium demand functions
of traders of type B (equation (136)), we obtain∫

MB

(βBs− γBp)di+

∫
MA

(αNA + βNA s− γNA p)di+ z = 0 (140)

mBβBs−mBγBp+mAα
N
A +mAβ

N
A s−mAγ

N
A p+ z = 0 (141)

We simplify notation by defining γN := mAγ
N
A +mBγB and βN := mAβ

N
A +mBβB. We solve

for the equilibrium price

p =
mAα

N
A

γN
+
βN

γN
s+

1

γN
z. (142)
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We can interpret the price as a random variable that is normally distributed because it is
a linear combination of normally distributed variables. Since it is the random price that
emerges from equilibrium demand functions in this market game, we write

p̃(XN∗
A , X∗) =

mAα
N
A

γN
+
βN

γN
s̃+

1

γN
z̃. (143)

Observe that the price does not contain more information about v + w than the common
signal. Thus, E[v + w | s, p = p̃(X∗)] = E[v + w | s] and V ar[v + w | s, p = p̃(X∗)] =
V ar[v + w | s].

From the projection theorem applied to normally distributed variables (e.g., DeGroot
(1970, Chapter 5), Vives (2008, 10.2.1)) follows that

1

V ar[ṽ + w̃ | s, p = p̃(XN∗
A , X∗)]

=
1

V ar[ṽ + w̃ | s]
:= τN = τv+w + τε (144)

and

E[ṽ + w̃ | s, p = p̃(XN∗
A , X∗)] = E[ṽ + w̃ | s] = w̄ +

τε
τN

(s− w̄). (145)

If all traders of type B use equilibrium demand X∗ and all traders of type A but i
use equilibrium demand XN∗

A , then conditional on the common signal s and price p =
p̃(XN∗

A , X∗), trading returns (ṽ + w̃ − p)xi of trader i ∈ MA from quantity xi is a random
variable that is distributed normally. Thus, as it is well-known in this case (e.g., Danthine
and Moresi (1993, pp. 979–980), Vives (2008, 10.2.4)), CARA expected utility conditional
on s and price p = p̃(XN∗

A , X∗) takes the “mean-variance” form

E[U((ṽ + w̃ − p)xi) | s, p = p̃(XN∗
A , X∗)]

= E[(ṽ + w̃ − p)xi | s, p = p̃(XN∗
A , X∗)]− ρ

2
V ar[(ṽ + w̃ − p)xi | s, p = p̃(XN∗

A , X∗)].(146)

Any demand schedule of trader i such that its realized quantity is (ex post) optimal
conditional on the price p and signal s for every price p and s is (when understood as a
demand function) also interim optimal for i given just s when other traders of type A follow
XN∗
A and traders of type B use X∗.
For every p and s, maximizing expected utility given in equation (146) w.r.t. xi yields

the first-order condition

x∗i =
E[ṽ + w̃ | s, p = p̃(XN∗

A , X∗)]− p
ρV ar[ṽ + w̃ | s, p = p̃(XN∗

A , X∗)]
. (147)

Since the objective function (146) is strictly concave in xi, the first-order condition is also
sufficient for the maximum. Substituting equations (144) and (145) into equation (147), we
obtain

x∗i = αNA + βNA s− γNA p (148)
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with the identification of coefficients

αNA =
τv+w
ρ

w̄ (149)

βNA =
τε
ρ

(150)

γNA =
τv+w + τε

ρ
(151)

This proofs the characterization of demand functions in the market game under non-disclosure.

Market game after disclosure: Under disclosure by some trader of type A, all traders of
type B have the same awareness as traders of type A and this is commonly known among
all traders. Suppose all traders use linear equilibrium demand functions for all s

XD∗(s)(p) = αD + βDs− γDp (152)

for any realization of the price p and some αD, βD, γD ∈ R with βD, γD 6= 0.
We can interpret the quantity x̃D∗ = XD∗(s̃)(p) as a random variable that is normally

distributed since it is a linear transformation of the normally distributed random variables.
Using the market clearing condition of equation (44), we obtain

αD + βDs− γDp+ z = 0 (153)

We solve for the equilibrium price

p =
αD

γD
+
βD

γD
s+

1

γD
z. (154)

We can interpret the price as a random variable that is normally distributed because it is
a linear combination of normally distributed variables. Since it is the random price that
emerges from equilibrium demand functions in this market game, we write

p̃(XD∗) =
αD

γD
+
βD

γD
s̃+

1

γD
z̃. (155)

Observe that the price does not contain more information about v + w than the common
signal. Thus, E[v + w | s, p = p̃(XD∗)] = E[v + w | s] and V ar[v + w | s, p = p̃(XD∗)] =
V ar[v + w | s].

From the projection theorem applied to normally distributed variables (e.g., DeGroot
(1970, Chapter 5), Vives (2008, 10.2.1)) follows that

1

V ar[ṽ + w̃ | s, p = p̃(XD∗)]
=

1

V ar[ṽ + w̃ | s]
:= τD = τv+w + τε

and

E[ṽ + w̃ | s, p = p̃(XD∗)] = E[ṽ + w̃ | s] = w̄ +
τε
τD

(s− w̄).

We observe that τD = τN and E[ṽ + w̃ | s, p = p̃(XD∗)] = E[ṽ + w̃ | s, p = p̃(XN∗
A , X∗)].

Thus, we can conclude that XD∗ = XN∗
A = XD∗

B . This completes the characterization of
equilibrium demand functions of all non-noise traders after disclosure. �
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Proof of Proposition 11

γA < γB (156)
τv+w + τε

ρ
<

τv + τε
ρ

τv+w < τv
1

σ2
v + σ2

w

<
1

σ2
v

(157)

�

Proof of Proposition 12

Expected CARA equilibrium utility of a trader of type A conditional on common signal s
and price p takes the familiar “mean-variance” form

E[U((f̃A − p)XN∗
A (i, s)(p)) | s, p] (158)

= (E[fA | s, p]− p)XN∗
A (i, s)(p)− 1

2
ρ(XN∗

A (i, s)(p))2V ar[fA | s, p] (159)

= (E[fA | s]− p)(α + βs− γAp)−
1

2

(α + βs− γAp)2

γA

=
1

2
γAp

2 − E[fA | s]γAp+ k (160)

with

k := βE[fA | s]s+ αE[fA | s]−
1

2

β2s2 + 2αβs+ α2

γA
(161)

where the second equation uses the equilibrium demand schedules of traders of type A
characterized in Proposition 10, the fact that signals are common and hence price does not
contain further information about the fundamental fB, as well as the observation that

V ar[fA | s, p] =
1

ργA
. (162)

Note that equation (160) is a function convex in prices p. We differentiate equation (160)
w.r.t. p to obtain the necessary and sufficient condition for a minimum,

∂E[U((f̃A − p)XN∗
A (i, s)(p)) | s, p]
∂p

= γAp− γAE[fA | s] = 0. (163)

Thus, the price minimizing expected CARA equilibrium utility of a trader of type A condi-
tional on common signal s and price p is

pmin = E[fA | s]. (164)

From Proposition 10 follows that conditional on s and p,

E[U((f̃A − p)XN∗
A (i, s)(p)) | s, p] = E[U((f̃A − p)XD∗

A (i, s)(p)) | s, p]. (165)
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That is, any effect of disclosure on expected utility of trader A comes only through the
change in the market clearing price.

Recall the market clearing price under nondisclosure,

p̃(XN∗
A , X∗) = mA

α

mAγA + (1−mA)γB
+

β

mAγA + (1−mA)γB
s+

z̃

mAγA + (1−mA)γB

Note that given s and p = p̃(XN∗
A , X∗), noise-trading can be inferred via this formula. By

solving for z, we define a function that maps the signal and the equilibrium market clearing
price in the market game under non-disclosure to the demand of noise-traders:

z(s, p) := (mAγA + (1−mA)γB)p− βs−mAα (166)

Next, note that (with some abuse of notation) we can rewrite the market clearing price
after disclosure, equation (155), as

p̃(XD∗
A ) = E[fA | s] +

z̃

γA
(167)

Note further, we can write the conditional expectation of the fundamental as (Vives (2008,
p. 378))

E[fA | s] = (1− ξ)w̄ + ξs (168)

with

ξ :=
τε

τv+w + τε
. (169)

Thus, we can write the market clearing price after disclosure as

p̃(XD∗
A ) = (1− ξ)w̄ + ξs+

z̃

γA
. (170)

Given s and p = p̃(XN∗
A , X∗), a trader of type A can anticipate the market clearing price

after disclosure using function z(s, p)

pD(s, p) = (1− ξ)w̄ + ξs+
z(s, p)

γA
. (171)

Hence, conditional on s and p = p̃(XN∗
A , X∗), she can also anticipate her expected utility

after disclosure, namely E[U((f̃A − p)XD∗
A (i, s)(pD(s, p))) | s, p]. Her equilibrium disclosure

strategy must satisfy d∗(i, s)(p = p̃(XN∗
A , X∗)) = D if and only if

E[U((f̃A − pD(s, p))XD∗
A (i, s)(pD(s, p))) | s, p] ≥ E[U((f̃A − p)XN∗

A (i, s)(p)) | s, p].(172)

Since the conditional expected CARA utility is quadratic in p, we have that

E[U((f̃A − pD(s, p))XD∗
A (i, s)(pD(s, p))) | s, p] = E[U((f̃A − qD(s, p))XD∗

A (i, s)(qD(s, p))) | s, p](173)
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with qD(s, p) = (1 − ξ)w̄ + ξs − z(s,p)
γA

. This is the price that has the same distance to pmin

as pD(s, p) but lies opposite to pD(s, p) (see Figure (4)). It becomes clear that since the
conditional expected CARA utility is quadratic in price, above inequality (172) is satisfied
if and only if for p = p̃(XD∗

A , X∗)

min

{
(1− ξ)w̄ + ξs− z(s, p)

γA
, (1− ξ)w̄ + ξs+

z(s, p)

γA

}
≤ p ≤ max

{
(1− ξ)w̄ + ξs− z(s, p)

γA
, (1− ξ)w̄ + ξs+

z(s, p)

γA

}
. (174)

The rest of the proof is to simplify this expression and bring into the form as presented
in the proposition. Note that

pD(s, p) = (1− ξ)w̄ + ξs+
z(s, p)

γA
(175)

= (1− ξ)w̄ + ξs+
(mAγA + (1−mA)γB)p− βs−mAα

γA

= (1− ξ)w̄ +
(mAγA + (1−mA)γB)p−mAα

γA
(176)

Thus, the post-disclosure market clearing price does not depend on s anymore. Using the
definitions of the coefficients, we obtain the conditions presented in the proposition.

Define

λ :=
mAγA + (1−mA)γB

γA
(177)

κ = (1− ξ)w̄ (178)

χ =
mAα

γA
(179)

η = 2ξ (180)

Note that λ > 1 and η > 0. Note further that

pD(p) = λp+ κ− χ (181)
qD(s, p) = −λp+ ηs+ κ+ χ (182)

The problem becomes

min{λp+ κ− χ,−λp+ ηs+ κ+ χ} ≤ p ≤ min{λp+ κ− χ,−λp+ ηs+ κ+ χ} (183)

with λ > 1 and η > 0.
Case 1: λp+ κ− χ ≤ −λp+ ηs+ κ+ χ. The solution is

K1 :=

{
(s, p) : p ≤ κ− χ

1− λ
,
1 + λ

η
p− κ+ χ

η
≤ s

}
(184)

Case 2: λp+ κ− χ ≥ −λp+ ηs+ κ+ χ. The solution is

K2 :=

{
(s, p) : p ≥ κ− χ

1− λ
,
1 + λ

η
p− κ+ χ

η
≥ s

}
(185)

Using the definitions of the coefficients, replacing them with the primitives, simplifying,
and rearranging, yields the expressions stated in Proposition 12 �
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