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Abstract

We extend Kuhn’s Theorem to games of the extensive form with unawareness. This
extension is not obvious: First, games of the extensive form with non-trivial unawareness
involve a forest of partially ordered game trees rather than just one game tree. An informa-
tion set at a node in one tree may consist of nodes in a less expressive tree. Consequently,
perfect recall takes a more complicated form as players may also become aware of new ac-
tions during the play. Second, strategies can only be partially an object of ex ante choice in
games with unawareness. Finally, nodes that a player may expect to reach with a strategy
profile may not be the nodes that actually occur with this strategy profile, requiring us to
define appropriate notions of equivalence of strategies. We show if a game of the extensive
form with unawareness has perfect recall, then for each mixed strategy there is an equivalent
behavior strategy but the converse does not hold under unawareness.
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1 Introduction

In games of the extensive form there are two notions of mixed strategies. First, a player can

ex ante mix over her strategies, using a so called mixed strategy. Second, at each information

set a player can mix interim over actions at that information set, using a so called behavior

strategy. Kuhn’s Theorem states that a game of the extensive form has perfect recall if and

only if for each mixed strategy there is a behavior strategy that is equivalent in terms of the

probabilities of reaching nodes in the game tree (Kuhn, 1953). The use of mixed strategies has

been questioned (see a discussion in Osborne and Rubinstein, 1994, Chapter 3.2). However,

even if players do not actually play mixed strategies, players may ex ante form probabilistic

beliefs over strategies of opponents, so called conjectures. Such a conjecture may be viewed as a

mixed strategy. Similarly, a player may form beliefs over opponents’ actions that they may play

at each of their information sets, and a profile of such beliefs, one for each of the opponent’s

information sets can be viewed as a behavior strategy. The Kuhn’s Theorem implies that in

games of perfect recall it is sufficient to work with behavior strategies. It highlights the role of

the perfect recall assumption and facilitates the development of theory in games of the extensive

form. Almost the entire literature invokes the perfect recall assumption and often invokes in

some form or another Kuhn’s Theorem. In that regard, it is fair to say that Kuhn’s Theorem

is one of the most fundamental theorems on games of the extensive form.

In games of the extensive form with unawareness, the notion of mixed strategy is even less

compelling. A player may not be aware of all actions ex ante. Thus, she may not be able to ex

ante conceive of all possible strategies and consequently may be unable to mix over them. Yet,

given her awareness ex ante, she conceives of some partial strategies that she is able to mix

over. It begs now the question whether for each (partial) mixed strategy there is an equivalent

(partial) behavior strategy. Several subtleties prevent a quick straightforward answer: First,

games of the extensive form with unawareness feature a forest of game trees rather than just one

tree (see Halpern and Rêgo, 2014, Heifetz, Meier, and Schipper, 2013, Grant and Quiggin, 2013,

Feinberg, 2021, Schipper, 2021; see Schipper 2014 for a review). The relevant information set at

a node in one tree may actually reside in a less expressive tree, signifying the fact that the player

to whom this information set belongs to is unaware of something. These obvious differences

in the formalism to standard games of the extensive form make it non-trivial to define perfect

recall in a meaningful way. Yet, the perfect recall assumption is instrumental for proving Kuhn’s

Theorem. In games of the extensive form with unawareness, perfect recall interacts with other

properties on how awareness differs across trees. In particular, these properties imply that

a player’s awareness may not decrease during play. That is, players do not only not forget

information but also do not forget awareness. Not surprisingly, it turns out that this property

is also crucial for us proving the analogue of Kuhn’s Theorem for games of the extensive form

with unawareness.
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There is another challenge that Kuhn’s Theorem faces in games of the extensive form with

unawareness. What is a meaningful notion of two strategies being equivalent to each other?

Games of the extensive form with unawareness allow the game theorist to model differing

players’ subjective conceptions of the game during the play. Since (partial) strategies are

objects of players’ beliefs, the notion of a strategy reaching a node or an information set is

also subjective. A player may believe that a strategy reaches a particular node or a particular

information set even though this node or information set cannot be realized with this strategy.

We formalize these two notions of a strategy being consistent with a node or information set in

a game of the extensive form, show their relationship, and extend Kuhn’s Theorem to both of

these two notions in games of the extensive form with unawareness. We show that if the game

of the extensive form with unawareness satisfies perfect recall, then for every mixed strategy

there exists an equivalent behavior strategy. We show also with a counterexample that the

converse of the theorem does not hold. Latter is in contrast to standard games of the extensive

form without unawareness. While major textbooks1 and even the seminal paper by Selten

(1975) just state that perfect recall implies the equivalence of mixed and behavior strategies for

standard games (without unawareness), Kuhn (1953) also proved the converse. This converse

fails under unawareness. That is, we can find games in which for every mixed strategy there

is an equivalent behavior strategy but that violates perfect recall (in a way that perfect recall

cannot be violated in games without unawareness). In particular, we present an example where

there is an action that the player herself is unaware of, but that leads to an information set of

that player that can also be reached with an action that the player is aware of.

Kuhn’s Theorem for games of the extensive form with unawareness helps to establish the

foundation of games with unawareness. This paper is motivated by prior work on self-confirming

equilibrium in which the result of this paper is invoked to define what we believe is a meaningful

notion of equilibrium in games with unawareness, a notion that can be interpreted both as a

steady state of conceptions and play (see Schipper, 2021). Various applications of games of

the extensive form with unawareness have been developed in the literature. Verifiable disclo-

sure and the failure of unraveling of information is analyzed by Heifetz, Meier, and Schipper

(2021); see Li and Schipper (2024) for an experiment. Schipper and Woo (2019) study political

campaigning. Filiz-Ozbay (2012) analyzes disclosure before insurance contracts, Francetich and

Schipper (2024) analyze the incentives of an agent for raising the awareness of a principal before

screening by the latter, and Pram and Schipper (2025) introduce dynamic elaboration VCG

mechanisms for implementation of efficient outcomes at the pooled awareness level in condi-

tional dominant strategies. We have now all game theoretic tools ready to revisit interesting

problems in economics and explore how the presence of unawareness may change predictions;

1Well known textbooks like Osborne and Rubinstein (1994) and Maschler, Solan, and Zamir (2013) state and

prove one direction. Even Kuhn’s (2002) own lecture notes just proves one direction. A notable exception is

Ritzberger (2002) who presents the most comprehensive treatment in the literature and states and proves both

directions.
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see Schipper (2025) for a bibliography of the growing literature.

We should state upfront that this paper has nothing to contribute to decision making un-

der absentmindedness (see Piccione and Rubinstein, 1997, and the special issue on imperfect

recall in Games and Economic Behavior 1997) beyond the fact that perfect recall also implies

non-absentmindedness in games of the extensive form with unawareness. Readers might be in-

terested in more extreme notions of absentmindedess where players become unaware of events

that they had been aware of previously, but such situations are outside current models of games

of the extensive form with unawareness.

The paper is organized as follows: The next section spells out in detail games of the extensive

form with unawareness. Section 3 introduces various notions of strategies. Kuhn’s Theorem is

extended to games of the extensive form with unawareness in Section 4.

2 Games of the Extensive form with Unawareness

In this section, we outline games of the extensive form with unawareness à la Heifetz, Meier,

and Schipper (2013).2 To define a game of the extensive form with unawareness Γ, consider

first, as a building block, a finite game of perfect information with possibly simultaneous moves.

That is, we allow for simultaneous moves as in Dubey and Kaneko, 1984, or in Osborne and

Rubinstein, 1994, Chapter 6.3.2. The major purpose of this tree is to outline all physical moves.

There is a finite set of players I and possibly a special player “nature” with index 0. We denote

by I0 the set of players including nature. Further, there is a nonempty finite set of “decision”

nodes D̄ and a player correspondence P : D̄ −→ 2I
0 \ {∅} that assigns to each node n ∈ D̄, a

nonempty set of “active” players P (n) ⊆ I0. For every decision node n ∈ D̄ and player i ∈ P (n)

who moves at that decision node, there is a nonempty finite set of actions Ai(n). Moreover,

there is a set of terminal nodes Z̄. Each terminal node z ∈ Z̄ is associated with a vector of

payoffs (ui(z))i∈I , one for each player i ∈ I. We require that nodes in N̄ are partially ordered

by a precedence relation ⋖ with which (N̄ ,⋖) forms an arborescence (that is, the predecessors

of each node in N̄ are totally ordered by ⋖). This means that nodes in N̄ := D̄ ∪ Z̄ constitute

2Although there are differences in the formalism between various approaches to games of the extensive form

with unawareness (Halpern and Rêgo, 2014, Heifetz, Meier, and Schipper, 2013, Grant and Quiggin, 2013,

Feinberg, 2021, Rêgo and Halpern, 2012, Ozbay, 2007; see Schipper, 2014, for a brief review), all approaches

model unawareness that is consistent with the paradigm of “propositional awareness” as in Fagin and Halpern

(1988) or Heifetz, Meier, and Schipper (2006). We use here the approach by Heifetz, Meier, and Schipper (2013)

(also used by Schipper and Woo, 2019, Heifetz, Meier, and Schipper, 2021, Schipper, 2021, Meier and Schipper,

2024, Francetich and Schipper, 2024, Li and Schipper, 2024, and Pram and Schipper, 2025) because information

sets in their approach can be interpreted as states of the mind of a player at a node. In their approach, information

sets model both information and awareness rather than just “information if the player were aware of it”. It also

avoids having to define a separate awareness correspondence that for each node specifies which nodes the player

is aware of.
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a directed tree denoted by T̄ and there is a unique node in N̄ with no predecessors (i.e., the

root of the tree). Finally, for each decision node n ∈ D̄ there is a bijection ψn between the

action profiles
∏

i∈P (n)Ai(n) at n and n’s immediate successors. Any terminal node in Z̄ has

no successors.

Note that so far we treat nature like any other player except that at terminal nodes we do

not assign payoffs to nature.3 We do not need to require that nature moves first or that nature

moves according to a pre-specified probability distribution (although these assumptions can be

imposed in our framework).

Consider now a finite join-semilattice T of subtrees of T̄ .4 A subtree T is defined by a

subset of nodes N ⊆ N̄ with N ∩ D̄ ̸= ∅, along with ⋖ the restriction of ⋖̄ to N , where (N,⋖)

is also a tree. Two subtrees T ′, T ′′ ∈ T are ordered, written

T ′ ⪯ T ′′

if the nodes of T ′ constitute a subset of the nodes of T ′′.

We require the following properties:

0. For any n, n′, n′′ ∈ T̄ such that n ⋖̄ n′ ⋖̄ n′′, if there exists nT , n
′′
T ∈ T then there is

n′T ∈ T . That is, we do not allow decision nodes ‘in-between’ two nodes in the objective

tree to be removed in a subtree unless one of the two nodes is also removed.

1. All the terminal nodes in each tree T ∈ T are in Z̄. That is, we don’t create “new”

terminal nodes.

2. For every tree T ∈ T, every node n ∈ T , and every active player i ∈ P (n) there exists

a nonempty subset of actions AT
i (n) ⊆ Ai(n) such that ψn maps the action profiles

AT (n) =
∏

i∈P (n)A
T
i (n) bijectively onto n’s successors in T .

3. For any tree T ∈ T, if for two decision nodes n, n′ ∈ T with i ∈ P (n) ∩ P (n′) it is the

case that Ai(n) ∩Ai(n
′) ̸= ∅, then Ai(n) = Ai(n

′).

We illustrate Property 0 in Figure 1. Suppose that the tree modeling all physical moves

is given by T̄ . Then T ′ is a subtree that does not satisfy Property 0. This is because nodes

n, n′, n′′ are in T̄ and n ⋖̄ n′ ⋖̄ n′′, however in T ′ there are copies of nodes n and n′′ (that is,

nT ′ and n′′T ′) but there is no copy of n′ in T ′. That is, the decision node n′ between n and n′′

in T̄ has been omitted in T ′ when nT ′ and n′′T ′ exist and that is not allowed under Property 0.

3Alternatively, we could assign at every terminal node the same payoff to nature.
4A join semi-lattice is a partially ordered set in which each pair of elements has a join, i.e., a least upper

bound. Requiring the forest of trees to form a join-semilattice implies there is an objective set of rules governing

the strategic interaction. Moreover, no matter which action a player may become aware of during the play, there

is a representation that captures all actions that she is aware of.
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Figure 1: Property 0

Subtree T ′′ on the other hand satisfies Property 0, because even though there is no copy of n′

in T ′′, there is also no copy of n′′ in T ′′.

Next, we illustrate Property 1 in Figure 2. Suppose that the tree the modeling all physical

moves is given by T̄ . Then T ′ is a subtree satisfying Property 1. In contrast, tree T ′′ does not

satisfy Property 1 because it contains a new terminal node. After cutting branches from tree

T̄ to create tree T ′′, there is now a node in T ′′ that was not a terminal node in the original tree

T̄ .

Figure 2: Property 1

Within the family T of subtrees of T̄ , some nodes n appear in several trees T ∈ T. In what

follows, we will need to designate explicitly appearances of such nodes n in different trees as
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distinct objects.5 To this effect, in each tree T ∈ T label by nT the copy in T of the node

n ∈ N̄ whenever the copy of n is part of the tree T , with the requirement that if the profile of

actions an ∈ A(n) leads from n to n′, then anT leads also from the copy nT to the copy n′T .

For any T, T ′, T ′′ ∈ T with T ⪯ T ′ ⪯ T ′′ such that n ∈ T ′′, nT ′ is the copy of n in the tree T ′,

nT is the copy of n in the tree T , and (nT ′)T is the copy of nT ′ in the tree T , we require that

“nodes commute”, nT = (nT ′)T . For any T ∈ T and any n ∈ T , we let nT := n (i.e., the copy

of n ∈ T in T is n itself).

Denote by D the union of all decision nodes in all trees T ∈ T, by Z the union of terminal

nodes in all trees T ∈ T, and by N = D∪Z. Copies nT of a given node n in different subtrees

T are now treated distinct from one another, so that N is a disjoint union of sets of nodes.

In what follows, when referring to a node inN we will typically avoid the subscript indicating

the tree T for which n ∈ T when no confusion arises. For a node n ∈ N we denote by Tn the

tree containing n.6

Denote by NT the set of nodes in the tree T ∈ T. Similarly, denote by DT
i the set of

decision nodes in which player i is active in the tree T ∈ T. Moreover, denote by ZT the set of

terminal nodes in the tree T ∈ T. Finally, we let Di denote the set of player i’s decision nodes

over all trees in T. In the case of nature, D0 would be all nodes at which nature moves.

In games of the extensive form with unawareness, information sets model both information

and awareness. At decision node n of player i in the tree Tn ∈ T, the player may conceive the

feasible paths to be described by a different (i.e., less expressive) tree T ′ ∈ T. In such a case,

her information set will be a subset of T ′ rather than of Tn and n will not be contained in the

player’s information set at n.

Formally, for each node n ∈ N, define for each active player i ∈ P (n) \ {0} a nonempty

information set hi(n) with the following properties:7

U0 Confined awareness: If n ∈ T and i ∈ P (n), then there is T ′ ∈ T, T ′ ⪯ T such that

hi(n) ⊆ T ′.

U1 Generalized reflexivity: If T ′ ⪯ T , n ∈ T , hi(n) ⊆ T ′ and T ′ contains a copy nT ′ of n,

then nT ′ ∈ hi(n).

I2 Introspection: If n′ ∈ hi(n), then hi(n
′) = hi(n).

I3 No divining of currently unimaginable paths, no expectation to forget currently conceiv-

5It turns out that it is much easier to talk about copies of nodes in a less expressive tree than copies of

histories in a less expressive tree. This is the main reason for why we make use of the “older” definition of

games of extensive form based on nodes (Kuhn, 1953, Selten, 1975) rather than the more recent notion based on

histories (Osborne and Rubinstein, 1994).
6Bold capital letters refer to sets of elements across trees.
7We keep the numbering consistent with Heifetz, Meier, and Schipper (2013).
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able paths: If n′ ∈ hi(n) ⊆ T ′ (where T ′ ∈ T is a tree) and there is a path n′, . . . , n′′ ∈ T ′

such that i ∈ P (n′) ∩ P (n′′), then hi(n′′) ⊆ T ′.

I4 No imaginary actions: If n′ ∈ hi(n), then Ai(n
′) ⊆ Ai(n).

I5 Distinct action names in disjoint information sets: For a subtree T ∈ T, if there are

decision nodes n, n′ ∈ T ∩D with Ai(n) = Ai(n
′), then hi(n

′) = hi(n).

Properties (I2), (I4), and (I5) are standard for games of the extensive form, and properties

(U0) and (U1) generalize standard properties of games of the extensive form to our generalized

setting. At each information set of a player, property (I3) confines the player’s anticipation of

her future view of the game to the view she currently holds (even if, as a matter of fact, this

view is about to be shattered as the game evolves). Figure 3 illustrates with an example and a

counterexample each both U0 and U1.

Figure 3: Properties U0 and U1

Central to our extension of Kuhn’s Theorem is the condition of perfect recall (I6).

I6 Perfect recall: Suppose that player i is active in two distinct nodes n1 and nk, and there

is a path n1, n2, ..., nk such that at n1 player i takes the action ai. If n′ ∈ hi (nk), then

there exists a node n′1 ̸= n′ and a path n′1, n
′
2, ..., n

′
ℓ = n′ such that hi (n

′
1) = hi (n1) and

at n′1 player i takes the action ai.

This property is illustrated with an example in Figure 4 and two counterexamples in Fig-

ure 5. Suppose the tree modeling all physical moves is given by T̄ , and T ′, T ′′ are subtrees

with T ′ ⪯ T ′′ ⪯ T̄ . To avoid clutter, we have included only the information sets of interest

in the diagram which are drawn in blue. In each tree, player 1 is the only player active at

the initial decision node and player 2 is the only player active at all other decision nodes, for

example with respect to T̄ player 1 is active at node n∗ and player 2 is active at nodes n′1, n
′′
1, n

′
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and n′′. The other nodes are terminal nodes. We restrict attention to the path where player

1 plays L at node n∗ and player 2 plays ai at n1, which is the action that has been colored

red. The information set at nk contains two nodes, n′ and n′′ both of which are in T ′. Perfect

recall requires 1) that both n′ and n′′ have a decision node of player 2 that precedes them in T ′

where ai is played, a condition which is satisfied by n′1 and n′′1 respectively; and 2) that these

nodes n′1 and n′′1 have the same information set as n1, which is satisfied as all three nodes have

the same information set in T ′′. Perfect recall requires these two conditions to be met for any

two nodes of a player whenever one precedes another in a tree. The diagrams in Figure 5 are

two examples in which the condition of perfect recall is not satisfied. In the left diagram, n′

does not have a decision node of player 2 that precedes it in T ′ where ai is played. In the right

diagram, the node n′1 does not have the same information set as n1.

It is known that in standard games of the extensive form without unawareness, perfect

recall is necessary for the “playability” of strategies8 and the existence of Nash equilibrium in

behavior strategies; see for instance Wichardt (2008) (see also an earlier example by Luce and

Raiffa, 1957, p. 160). Since standard games of the extensive form are special cases of games

of the extensive form with unawareness, such arguments apply also to games of the extensive

form with unawareness.

Figure 4: Perfect Recall Example

We provide two alternate characterizations of the perfect recall condition. First, perfect

recall can be interpreted as players do not forget their experience throughout the game. This

can be made explicit. For any player i ∈ I and decision node of that player n ∈ Di, let Ei(n)

denote the record of player i’s experience along the path to n (not including hi(n)). I.e., Ei(n)

is the sequence of pairs (hi, ai) of player i’s information sets and the action taken at these

8A mixed strategy may require for instance to mix between strategy “play left after having played left” and

“play right after having played right”. Without perfect recall, such a strategy is not playable because when the

player moves the second time, she has forgotten whether she played right or left before.
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Figure 5: Perfect Recall Counterexamples

information sets in order of how they are encountered along the path to n. Perfect recall is now

characterized as follows:

Remark 1 A game of the extensive form with unawareness satisfies perfect recall (I6) if and

only if for any player i ∈ I, n ∈ Di, n
′ ∈ hi(n) implies Ei(n

′) = Ei(n).

Proof. “⇒”: Consider the non-trivial case n′ ̸= n. Suppose by contradiction that Ei(n
′) ̸=

Ei(n). Then there exists a path n1, n2, ..., nk with n = nk for which there is no path n′1, n
′
2, ..., n

′
ℓ

with n′ = n′ℓ such that hi(n1) = hi(n
′
1) and the action taken at n′1 along the path n′1, n

′
2 is the

action taken at n1 along the path n1, n2. But this contradicts I6.

“⇐”: Suppose not. Then there are two nodes n1 and nk with n1 ̸= nk with the path

n1, n2, ..., nk where n = nk such that at n1 player i takes action ai along the path, but there

is some n′ ∈ hi(n) where there is no node n′1 ̸= n′ where there is a path n′1, n
′
2, ..., n

′
ℓ = n′,

hi(n
′
1) = hi(n1) and player i takes action ai at n

′
1 along the path. But this just means that

player’s records of experience are different in nodes n and n′, i.e., Ei(n
′) ̸= Ei(n), a contradic-

tion. □

Another characterization would be something similar to the definition provided in Selten

(1975). For two nodes n, n′ where Tn = Tn′ , define n <a n
′ to hold if action a is taken at n in

order to get to n′.

Remark 2 A game of the extensive form with unawareness satisfies perfect recall (I6) if and

only if for any player i ∈ I, n1, nk, n
′
ℓ ∈ Di with hi(nk) = hi(n

′
ℓ), n1 <ai nk for some ai ∈ Ai(n1)

implies n′1 <ai n
′
ℓ for some n′1 with hi(n

′
1) = hi(n1).
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Proof. “⇒”: Suppose by contradiction that x <a y for some a ∈ Ai(x) but there does

not exist x′ such that x′ <a y
′ with hi(x

′) = hi(x). Then there exists a path x, n2, ..., nk with

y = nk for which there is no path x′, n′2, ..., n
′
ℓ with y′ = n′ℓ such that hi(x) = hi(x

′) and the

action taken at x′ along the path x′, n′2 is a. But this contradicts I6.

“⇐”: Suppose not. Then there are two nodes n1 and nk with n1 ̸= nk with the path

n1, n2, ..., nk such that at n1 player i takes action ai along the path, but there is some n′ ∈ hi(nk)

where there is no node n′1 ̸= n′ where there is a path n′1, n
′
2, ..., n

′
ℓ = n′, hi(n

′
1) = hi(n1) and

player i takes action ai at n
′
1 along the path. But this means that for player i, hi(nk) = hi(n

′
ℓ)

and n1 <ai nk but there is no n′1 such that n′1 <ai n
′
ℓ with hi(n

′
1) = hi(n1), a contradiction. □

In this form, the reader can more easily see that with respect to the perfect recall condition

I6, the nodes n1 and nk must be in the same tree T , and the nodes n′1 and n′ℓ must be in the

same tree T ′, but T and T ′ may be different. We provide more elaboration on the perfect recall

condition in Section 4.

We denote by Hi the set of player i’s information sets in all trees. For an information set

hi ∈ Hi, we denote by Thi
the tree containing hi. For two information sets hi, h

′
i in a given tree

T, we say that hi precedes h
′
i (or that h

′
i succeeds hi) if for every n

′ ∈ h′i there is a path n, ..., n′

in T such that n ∈ hi. We denote it by hi ⇝ h′i.

The following property is implied by I2 and I4 (see Heifetz, Meier, and Schipper, 2013,

Remark 1): If n′, n′′ ∈ hi where hi = hi (n) is an information set for some n ∈ Di, then

Ai(n
′) = Ai(n

′′). Hence, if n ∈ hi we write also Ai(hi) for Ai(n).

Properties U0, U1, I2, and I6 imply no absent-mindedness. This follows directly from

Heifetz, Meier, and Schipper (2013, Remark 2).

No Absent-mindedness: No information set hi contains two distinct nodes n, n′ on the

same path in some tree.

The Perfect recall property I6 therefore guarantees that with the precedence relation ⇝

player i’s information sets Hi form an unrooted tree: For every information set h′i ∈ Hi, the

information sets preceding it {hi ∈ Hi : hi ⇝ h′i} are totally ordered by ⇝.

Confined awareness (U0) and Perfect recall (I6) imply that a player cannot become unaware

during the play (see Heifetz, Meier, and Schipper, 2013, Remark 6).

DA Awareness may only increase along a path: If there is a path n, . . . , n′ in some subtree T ′′

such that player i is active in n and n′, and hi (n) ⊆ T while hi (n
′) ⊆ T ′, then T ′ ⪰ T .

To model unawareness proper, we impose as in Heifetz, Meier, and Schipper (2013) addi-

tional properties. They parallel properties of static unawareness structures in Heifetz, Meier,

and Schipper (2006):
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U4 Subtrees preserve ignorance: If T ⪯ T ′ ⪯ T ′′, n ∈ T ′′, hi(n) ⊆ T and T ′ contains the copy

nT ′ of n, then hi(nT ′) = hi(n).

U5 Subtrees preserve knowledge: If T ⪯ T ′ ⪯ T ′′, n ∈ T ′′, hi(n) ⊆ T ′ and T contains the

copy nT of n, then hi(nT ) consists of the copies that exist in T of the nodes of hi(n).

It is known that U5 implies U3, see Heifetz, Meier, and Schipper (2013, Remark 3):

U3 Subtrees preserve awareness: If n ∈ T ′, n ∈ hi(n), T ⪯ T ′, and T contains a copy nT of

n, then nT ∈ hi(nT ).

Properties U3 to U5 are illustrated in Figure 6 with an example and counterexample each.

Figure 6: Properties U3 to U5

For trees T, T ′ ∈ T we denote by T ↣ T ′ whenever for some node n ∈ T and some player

i ∈ P (n) it is the case that hi(n) ⊆ T ′. Denote by ↪→ the transitive closure of↣. That is, T ↪→
T ′′ if and only if there is a sequence of trees T, T ′, . . . , T ′′ ∈ T satisfying T ↣ T ′↣ · · ·↣ T ′′.

A game of the extensive form with unawareness Γ consists of a join-semilattice T of subtrees

of a tree T̄ satisfying properties 1–3 above, along with information sets hi(n) for every n ∈ T
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with T ∈ T and i ∈ P (n), and payoffs satisfying properties U0, U1, U4, U5, and I2-I5 above.

We say that the game satisfies perfect recall if I6 also holds for all players i ∈ I.

For any game of the extensive form with unawareness Γ with set of trees T, for any tree

T ∈ T, the T -partial game is the join-semisublattice of trees including T and also all trees T ′ in

Γ satisfying T ↪→ T ′, with information sets as defined in Γ. A T -partial game is a game of the

extensive form with unawareness, i.e., it satisfies all properties 1–3, U0, U1, U4, U5, and I2-I5

above, and we say that the game satisfies perfect recall if I6 also holds for all players i ∈ I.

We denote by HT
i the set of player i’s information sets in the T -partial game, T ∈ T. This

set contains not only i’s information sets in the tree T but also in all trees T ′ ∈ T with T ↪→ T ′.

3 Strategies

For any collection of sets (Xi)i∈I0 we denote by

X :=
∏
i∈I0

Xi, X−i :=
∏

j∈I0\{i}

Xj

with typical elements x and x−i respectively. For any collection of sets (Xi)i∈I0 and any tree

T ∈ T, we denote by XT
i the set of objects in Xi restricted to the tree T and analogously for

XT and XT
−i, where “restricted to the tree T” will become clear from the definitions below.

A pure strategy for player i ∈ I,

si ∈ Si :=
∏

hi∈Hi

A(hi)

specifies an action of player i at each of her information sets hi ∈ Hi. We let

s0 ∈ S0 :=
∏

n∈D0

A0(n)

denote the “strategy” of nature, with D0 denoting the “decision” nodes of nature.

With the strategy si, at node n ∈ DTn
i define player i’s action at n to be si(hi(n)), for i ∈ I.

Thus, by U1 and I4 the strategy si specifies what player i ∈ I does at each of her active nodes

n ∈ DTn
i , both in the case that n ∈ hi(n) and in the case that hi(n) is a subset of nodes of a

tree which is distinct from the tree Tn to which n belongs. In the first case, when n ∈ hi(n),

we can interpret si(hi(n)) as the action chosen by player i in node n. In the second case, when

n /∈ hi(n), si(hi(n)) cannot be interpreted as the action chosen “consciously” by player i in n

since she is not even aware of Tn. Instead, her state of mind at n is given by her information set

hi(n) in a tree lower than Tn (denoted by Thi(n)). Thus, si(hi(n)) is the physical move of player

i in n in tree Tn induced by her “consciously” chosen action at her information set hi(n) in

tree Thi(n) (with Tn ≻ Thi(n)). As an example, consider the game in Figure 7. The information
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set at node n in tree Tn lies in the lower tree Th(n) that misses the action “middle”. This is

indicated by the blue arrow and disk. When the player chooses “left” in Th(n) (as indicated by

the red solid line beside the left edge), it induces also an action “left” at node n in tree Tn (as

indicated by the red dashed line beside the left edge).

Figure 7: Action induced by a strategy

In a game of the extensive form with unawareness Γ the tree T̄ ∈ T represents the physical

paths in the game; every tree in T that contains an information set represents the subjective

view of the feasible paths in the mind of a player, or the view of the feasible paths that a

player believes that another player may have in mind, etc. Moreover, as the actual play in T̄

unfolds, a player may become aware of paths of which she was unaware earlier, and the way

she views the game may be altered. Thus, in a game of the extensive form with unawareness,

a strategy cannot be conceived as an ex ante plan of action. Formally, a strategy of player i is

a list of answers to the questions “what would player i ∈ I do if hi were the set of nodes she

considered as possible?”, for hi ∈ Hi (and analogous for nature). A strategy of a player becomes

meaningful as an object of beliefs of other players. How “much” of a player’s strategy other

players can conceive depends on their awareness given by the tree in which their information

set is located. This leads to the notion of T -partial strategy. For a strategy si ∈ Si and a tree

T ∈ T, we denote by sTi the strategy in the T -partial game induced by si (i.e., s
T
i (hi) = si (hi)

for every information set hi ∈ HT
i of player i in the T -partial game). (Recall that HT

i not only

contains information sets in the tree T but also in trees T ′ ∈ T with T ′ ⪯ T .)

A mixed strategy of player i ∈ I0, σi ∈ ∆(Si), specifies a probability distribution over player

i’s set of pure strategies. With this notation, we let σ0 be the probability distribution over

“strategies” of nature. As mentioned already in the introduction, we don’t consider mixed (or

behavior) strategies necessarily as an object of choice of players but rather a conjecture over

how a player would play.

A behavior strategy for player i ∈ I,

βi ∈ Bi :=
∏

hi∈Hi

∆(Ai(hi))

is a collection of independent probability distributions, one for each of player i’s information
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sets hi ∈ Hi, where βi(hi) specifies a mixed action in ∆(Ahi
). With the behavior strategy βi, at

node n ∈ DTn
i define player i’s mixed action at n to be βi(hi(n)). Thus, the behavior strategy

βi specifies the mixed action of player i ∈ I at each of her active decision nodes n ∈ DTn
i , both

in the case that n ∈ hi(n) and in the case that hi(n) is a subset of nodes of a tree which is

distinct from the tree Tn to which n belongs. It may be the case that Ai(n) ⊃ Ai(hi(n)). Yet,

we have automatically that βi does not assign probabilities to actions in An \ Ahi(n). (I.e., at

the decision node n of the richer tree Tn player i may have more actions than she is aware of

at hi(n). In such a case, she is unable to use actions that she is unaware of.) With respect to

nature, we let β0 ∈ B0 =
∏

n∈D0
∆(A0(n)).

We say that a strategy profile s = (sj)j∈I ∈ S reaches a node n ∈ T if n is on the path of

play in T given the players’ actions and nature’s moves
(
sTj (hj (n

′))
)
j∈P (n′)

in nodes n′ ∈ T .

Notice that by property (I4) (“no imaginary actions”), sTj (hj (n
′))j∈I is indeed well defined:

even if hj (n
′) ⊈ T for some n′ ∈ T ,

(
sTj (hj (n

′))
)
j∈P (n′)

is a profile of actions which is actually

available in T to the active players j ∈ P (n′) and possibly nature at n′. We say that a strategy

profile s ∈ S reaches the information set hi ∈ Hi if s reaches some node n ∈ hi. We say that

the strategy si ∈ Si allows the node n to be reached if there is a strategy profile s−i ∈ S−i

of the other players (and possibly nature) such that the strategy profile (si, s−i) reaches n.

Analogously, we say that the strategy profile s−i ∈ S−i allows the information set hi to be

reached if there exists a strategy si ∈ Si such that the strategy profile (si, s−i) reaches hi. For

each player i ∈ I, denote by Hi(s) the set of information sets of i that are reached by the

strategy profile s. This set may contain information sets in more than one tree.

We extend the definitions of information set reached to mixed and behavior strategies in

the obvious way by considering nodes/information sets reached with strict positive probability.

4 Kuhn’s Theorem

In games of the extensive form without unawareness but with perfect recall, Kuhn’s Theorem

asserts that for every mixed strategy profile there is an equivalent behavior strategy profile.

Kuhn’s Theorem can be extended to games of the extensive form with unawareness using a

notion of equivalence based on the notion of reaching nodes. For any node n, any player i ∈ I0,

and any opponents’ profile of strategies s−i (including nature if any), let ρ(n | βi, s−i) and

ρ(n | σi, s−i) denote the probability that (βi, s−i) and (σi, s−i) reach node n, respectively. For

any player i ∈ I0, a mixed strategy σi and a behavior strategy βi are equivalent if for every

profile of opponents’ strategies s−i ∈ S−i and every node n ∈ N of the game of the extensive

form with unawareness ρ(n | σi, s−i) = ρ(n | βi, s−i).

Let Si(n) be the set of all strategies of player i that allows n to be reached. That is, if n ∈ T

then si ∈ Si(n) if and only if there exist s−i ∈ S−i such that the profile (sTj (hj(n
′)))j∈P (n′) in
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n′ ∈ T reaches n.

In the following, we extend for better comparison a textbook proof of Kuhn’s Theorem (e.g.,

Maschler, Solan, and Zamir, 2013, Chapter 6) to the more complicated set up of games of the

extensive form with unawareness. It allows us to show which modifications are necessary as

compared to standard games, and emphasizes that the basic idea of proof remains the same

although the setting is considerably more complicated. We start with a lemma that is crucial

for the proof of the main theorem.

Lemma 1 Consider a game of the extensive form with unawareness Γ. If Γ satisfies perfect

recall (i.e., I6), then for any player i ∈ I, n ∈ N with hi(n) ∈ Hi, and n
′ ∈ hi(n), Si(n) =

Si(n
′).

Note the difference to standard games. First, games of the extensive form with unawareness

involve forests of trees rather than just trees. Second, the perfect recall property applies now

to information sets across trees. Third, the sets Si(n) are different from corresponding sets in

standard games because n may be in a tree different from the tree “housing” the information

set hi(n) of player i at n. This is significant because strategies are defined for each information

set (rather than decision node) of player i.

Proof of Lemma 1. Since Γ satisfies perfect recall, we have by Remark 1 that n′ ∈ hi(n)

implies Ei(n
′) = Ei(n). Thus, the same information sets of player i that are reached along the

path to n are reached along the path to n′ (even though the information sets might appear in

a subtree lower than the one containing the path to n). Moreover, at each of those information

sets the same action is required to move along the path to n as to move along to the path to

n′. Hence, any strategy that allows n to be reached also allows n′ to be reached and vice versa. □

We are now ready to state an extension of Kuhn’s Theorem to games of the extensive form

with unawareness.

Theorem 1 In every game of the extensive form with unawareness, if player i has perfect

recall, then for every mixed strategy of player i there exists an equivalent behavior strategy.

Proof. The theorem is proved in three steps. The first step defines the candidate of the

behavior strategy. The second step shows that it is well-defined. The third step shows it to be

equivalent to the mixed strategy.

Let σi be a mixed strategy of player i.

First, we define a candidate for the equivalent behavior strategy. Let n ∈ Di. Since n ∈ Di

we have Ai(n) ̸= ∅. For any action ai ∈ Ai(n) of player i at n, define Si(n, ai) := {si ∈
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Si(n) : si(hi(n)) = ai}. That is, any strategy in Si(n, ai) allows n to be reached and also

prescribes action ai at information set hi(n). This definition makes sense: First, recall that

strategies ascribe actions to information sets (rather than nodes). Moreover, by definition of

Γ there is an information set of player i at n that we denote by hi(n). There are two cases:

First, n ∈ hi(n). In this case, for any n′ ∈ hi(n) we have Ai(n) = Ai(n
′) (Heifetz, Meier, and

Schipper, 2013, Remark 1). Thus, we write Ai(hi(n)) for actions available at any node in hi(n).

Second, n /∈ hi(n). (That’s the case when n is in a tree more expressive than hi(n).) By I4 (No

imaginary actions), for any n′ ∈ hi(n) we have Ai(n
′) ⊆ Ai(n). Note also that Ai(n

′) ̸= ∅ since

n′ ∈ Di. If ai ∈ Ai(n) \ Ai(n
′), then Si(n, ai) = ∅ since no strategy of player i can ascribe an

action to n that is not available at hi(n). Hence, in the following we consider sets Si(n, ai) for

ai ∈ Ai(hi(n)).

If player i’s mixed strategy assigns strict positive probability to strategies reaching n, i.e.,

if
∑

si∈Si(n)
σi(si) > 0, then define for each action ai ∈ Ai(hi(n)),

βi(hi(n))(ai) :=

∑
si∈Si(n,ai)

σi(si)∑
si∈Si(n)

σi(si)
. (1)

Otherwise, if
∑

si∈Si(n)
σi(si) = 0, define βi(hi(n)) in an arbitrary way provided that it consti-

tutes a probability measure over actions available at hi(n). E.g., for all ai ∈ Ai(hi(n)),

βi(hi(n))(ai) :=
1

|Ai(hi(n))|
. (2)

Second, we want to show that βi is well-defined. I.e., for each of player i’s information sets

hi ∈ Hi, βi(hi) is a probability measure on Ai(hi). Moreover, βi is independent of player i’s

decision nodes. For the latter, it suffices to demonstrate it for the case
∑

si∈Si(n)
σi(si) > 0.

Since Γ has perfect recall, i.e., Γ satisfies I6, we have by Lemma 1 that for any n′ ∈ hi(n),

Si(n
′) = Si(n). Again, since n′ ∈ hi(n), Si(n, ai) = Si(n

′, ai) for all ai ∈ Ai(hi). Observe that

both the numerator and the denominator of the right-hand side of Equation (1) are independent

of nodes in hi(n).

To show that for all n ∈ Di, βi(hi(n)) is a probability measure over Ai(hi(n)), note first

that, in the case of
∑

si∈Si(n)
σi(si) = 0, this follows directly from Equation (2).

If
∑

si∈Si(n)
σi(si) > 0, then Equation (1) defines a probability distribution over Ai(hi). To

see this note that since σi(si) ≥ 0 for all si ∈ Si, both the numerator and the denominator

are non-negative and hence βi(hi)(ai) ≥ 0 for all ai ∈ Ai(hi). For any n ∈ Di and ai, a
′
i ∈

Ai(hi(n)) with ai ̸= a′i, Si(n, ai)∩Si(n, a′i) = ∅. Moreover,
⋃

ai∈Ai(hi(n))
Si(n, ai) = Si(n). Thus,∑

ai∈Ai(hi(n))

∑
si∈Si(n,ai)

σi(si) =
∑

si∈Si(n)
σi(si). It follows that

∑
ai∈Ai(hi)

βi(hi)(ai) = 1.

The third and last step is to show that the behavior strategy βi is equivalent to the mixed

strategy σi. The probability ρi that node n is allowed to be reached given mixed strategy σi

of player i is: ρi(n | σi) := Σsi∈Si(n)σi(si). When Si(n) = ∅, ρi(n | σi) := 0. The probability
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ρ−i that node n is allowed to be reached given some profile of player i’s opponents’ (pure)

strategies s−i ∈ S−i is: ρ−i(n | s−i) := Σs−i∈S−i(n)s−i which just equals to 1 if s−i ∈ S−i(n)

and 0 if s−i /∈ S−i(n). Then, as the strategies between players are independent, we obtain that

ρ(n | σi, s−i) = ρi(n | σi) × ρ−i(n | s−i) = Σsi∈Si(n)σi(si) if s−i ∈ S−i(n) and 0 otherwise. We

obtain an analogous result for βi due to the independence of strategies between players. For

any n ∈ N we also have ρ(n | βi, s−i) = ρi(n | βi) if s−i ∈ S−i(n) and 0 otherwise. As a result,

in what follows we can focus without loss of generality on the case where s−i ∈ S−i(n).

Fix a node n ∈ Di∪Z and let n1i , n
2
i , ..., n

L
i be a sequence of decision nodes of player i along

the path from the root to n, not including n. By definition of Γ, there exists an information

set of player i for each of the decision nodes n1i , n
2
i , ..., n

L
i . If L = 0, then player i has no

information sets on the path from the root to n (not including n). In such a case, Si(n) = Si

and for any s−i ∈ S−i we naturally define ρi(n | βi) = 1. We therefore have ρ(n | βi, s−i) = 1 for

s−i ∈ S−i(n). Also, in this case ρ(n | σi, s−i) = ρi(n | σi) =
∑

si∈Si(n)
σi(si) = Σsi∈Siσi(si) = 1

for s−i ∈ S−i(n). Hence, βi and σi are equivalent in this case.

Suppose now the case L > 0. Let a
nℓ
i

i ∈ Ai(hi(n
ℓ
i)) denote the action of player i at node nℓi ,

ℓ = 1, ..., L, that leads to nℓ+1
i in the case ℓ = 1, ..., L − 1 and to n in the case ℓ = L. Again,

assume without loss of generality that s−i ∈ S−i(n).

We have

ρ(n | βi, s−i) = ρi(n | βi) =
L∏

ℓ=1

βi(hi(n
ℓ
i))(a

nℓ
i

i ). (3)

Assume without loss of generality that σi allows n to be reached (otherwise ρi(n | σi) = ρi(n |
βi) = 0). By definition of βi,

ρ(n | βi, s−i) =
L∏

ℓ=1

∑
si∈Si(nℓ

i ,a
nℓ
i

i )
σi(si)∑

si∈Si(nℓ
i)
σi(si)

, (4)

which is well-defined since σi is assumed to allow n to be reached and therefore also allows

n1i , ..., n
L
i to be reached.

Note that Si(n
ℓ+1
i ) = Si(n

ℓ
i , a

ℓ
i). Thus∑

si∈Si(nℓ
i ,a

ℓ
i)

σi(si) =
∑

si∈Si(n
ℓ+1
i )

σi(si)

and

ρ(n | βi, s−i) =

L∏
ℓ=1

∑
si∈Si(n

ℓ+1
i ) σi(si)∑

si∈Si(nℓ
i)
σi(si)

, (5)

(where we take nL+1 = n) is the telescopic product for which the numerator of the ℓ-th term of

the product equals to the denominator of the ℓ+ 1-th term of the product. Adjacent product
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terms cancel each other out. Thus,

ρ(n | βi, s−i) =

∑
si∈Si(n)

σi(si)∑
si∈Si(n1

i )
σi(si)

. (6)

Since n1i is in player i’s first information set on the path towards n, we have Si(n1) = Si. Hence,

ρ(n | βi, s−i) =

∑
si∈Si(n)

σi(si)∑
si∈Si

σi(si)
. (7)

Since trivially any strategy of player i allows her first information set to be reached, we have

Σsi∈Siσi(si) = 1. Thus,

ρ(n | βi, s−i) =

∑
si∈Si(n)

σi(si)

1
= ρi(n | σi, s−i). (8)

This completes the proof of the theorem. □

While most textbooks in game theory just focus on the arguably more relevant direction of

Kuhn’s Theorem for standard games without unawareness as Theorem 1 does for games with

unawareness, Kuhn’s (1953) original theorem is a characterization. That is, he proves that in

every game of the extensive form without unawareness (in which all decision nodes have at least

two actions), the game satisfies perfect recall if and only if for every mixed strategy there is an

equivalent behavior strategy. However, under unawareness the converse of Theorem 1 does not

hold. That is, there are some games of the extensive form with unawareness for which there

exists an equivalent behavior strategy for every mixed strategy of player i, but player i does

not have perfect recall. We present one such example in Figure 8. There are two trees, T̄ ≻ T .

There is a single player 1 moving at two information sets in this game, both of which are in

T as indicated in blue. Since Player 1 does not have information sets in T̄ , she is never aware

of the right action at node n. Consequently, we have an equivalence of mixed and behavior

strategies. This is because Player 1 can achieve at T any distribution over terminal nodes

with either notion of strategy, and because right is never playable at h1(n) (by either notion

of strategy) the distribution induced at T̄ must be identical to that at T . Perfect recall does

not hold however, as right is played by Player 1 on the path from n to n′′ in T̄ but there is no

path in T where right is played before n′′′. That is, the game of Figure 8 is ruled out by the

assumption of perfect recall in the theory of games of the extensive form with unawareness by

Heifetz, Meier, and Schipper (2013).

Figure 8 raises several deeper questions. First, do we have the “right” notion of perfect recall

for games with unawareness? According to Kuhn (1953, p. 213), perfect recall “is equivalent to

the assertion that each player is allowed by the rules of the game to remember everything she

knew at previous moves and all of her choices at those moves.”9 In games with unawareness,

9See also Ritzberger (1999) for a characterization of perfect recall and the discussion of perfect recall in

Ritzberger (2002).
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Figure 8: Counterexample for the converse of Theorem 1

a player may be unaware of some of her own actions. If we were to allow a player to take an

action that she is unaware of without her realizing that she took such an action, then she could

not know and remember her choice at that previous move, hence violating perfect recall. This

is exactly what happens in the example of Figure 8. The rules of physical moves of the game

allow the player to go right initially even though she does not realize that she could go right.

Moreover, even after going right, she does not realize that she went right leading her mistakenly

to believe she went left. In contrast to standard games without unawareness, in games with

unawareness the set of nodes where the player has the same state of mind can be larger than the

set of nodes that she considers possible. This gives rise to situations where at her information

set the player is unaware of some previous action that allows the node at which she has this

information set. The perfect recall assumption rules this out. That is, at an information set

the player cannot be unaware of her prior own action that allows a node at which she has this

information set, ruling out scenarios such as in Figure 8. Note that this example only violates

the memory condition for actions. It does satisfy the memory condition for information sets,

i.e., at the latter information set in T , the player remembers everything she knew at the initial

information set at T (all the while being completely unaware of the right action at n).

Another natural question that arises here is regarding the notion of strategy: Should the

play of an action that the player is unaware of be allowed? In Figure 8, equivalence between

strategies is only obtained due to right not being playable at h1(n). If within our notions of

mixed and behavior strategies we allow the player to play right (despite being unaware of it)

then equivalence would no longer hold as mixed strategies would be able to achieve a larger
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set of outcomes than behavior strategies.10 In the sense that the tree T̄ models “actual” or

“objective” play, one possible way to look at this question is whether we should allow the actual

play and intended play (as perceived by the consciousness of the player) to diverge.11 If we

think of it in relation to real life situations, it certainly does not seem unreasonable to allow

this. For instance, a fighter pilot during a stressful dogfight while intending to press one button

in a complex cockpit may accidentally press another button he does not even consider at that

moment and may entirely fail to realize that he has pressed the wrong button. In day to day

life it is also not uncommon for us to make a mistake we cannot even conceive of at the time

of acting, for example making typos in the essay we are writing due to pressing the wrong

keys and unknowingly invoking shortcuts or commands in the software, all the while remaining

completely unaware of the error. Capturing the above situations within our model with a

generalized notion of strategy and a weaker notion of perfect recall is an interesting possibility

and by no means do we dismiss it conceptually as it would allow us to study problems of

situation awareness in military theory. However, to the extent that we aim to model rational

play as the benchmark for real behavior, we want to rule out that players choose to play actions

of which they are unaware of. After all, intentional choice can only be done among options

that one can conceive of. And by restricting actions to only what is available to a player at an

information set, we naturally rule out situations where the player plays actions she is not aware

of in the “objective” tree T̄ .

4.1 Equivalence in Realization of Nodes

In games of the extensive form with unawareness there are two distinct notions of a strategy

profile being consistent with a node. The first notion we introduced already at the end of Sec-

tion 3 and called it a “strategy profile reaching a node”. While a player may expect a strategy

profile to reach a node, it can be the case in games with unawareness that a different node actu-

ally occurs. This is because the player is unaware of actions that a player with more awareness

may take (since each player just considers the partial strategies consistent with her awareness

level). This begs the question whether strategies that are equivalent with respect to nodes

reached are also equivalent with respect to nodes that actually occur. Note that both notions

of a node being consistent with a strategy are relevant. The notion of a strategy reaching a node

is relevant for extensive-form rationalizability, more recently also called strong rationalizability

due to Pearce (1984) and Battigalli (1997) and extended to games of the extensive form with

unawareness by Heifetz, Meier, and Schipper (2013) whereas the notion of a node occurring

10For example, consider mixed strategy 1
2
(left, left)+ 1

2
(right, right), where the first entry in the vector refers

to the action chosen at the initial information set and the second entry refers to the action chosen at the latter

information set. There is no equivalent behavior strategy that achieves the distribution over outcomes in T̄ .
11See Battigalli and De Vito (2021) for recent work distinguishing between intended play and actual play in

standard games without unawareness.
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with a strategy is crucial for self-confirming equilibrium (Battigalli and Guaitoli, 1997, and

Battigalli and Bordoli, 2024) as extended to games of the extensive form with unawareness by

Schipper (2021). As we will observe, the notions of node reached and node occurring coincide in

games that feature only one tree (as in standard games without unawareness), but can diverge

in games with unawareness that have more than one tree. Consequently, our model allows

us to make explicit the differences between these two notions, compare them accordingly and

illustrate some relationships between subjective and “objective” play.

We say that node n ∈ T̄ in the upmost tree T̄ occurs with strategy profile s = (sj)j∈I ∈ S if

n is on the path of play in T̄ given the players’ actions and nature’s moves (sj (hj(n
′)))j∈P (n′) in

nodes n′ ∈ T̄ . We extend the notion to any node in any tree by saying that node n ∈ T occurs

with strategy profile s = (sj)j∈I ∈ S if there is n′ ∈ T̄ s.t. n′T = n and n′ occurs with s. This is

well-defined because T is a join semi-lattice and therefore there will always be an upmost tree.

In particular, for any T ∈ T and n ∈ T there is a node n′ ∈ T̄ such that n′T = n. We say that

the strategy si ∈ Si allows the node n to occur if there is a strategy profile s−i ∈ S−i of the

other players (and possibly nature) such that n occurs given the strategy profile (si, s−i).

We say that information set hi ∈ Hi occurs with strategy profile s ∈ S if some node

n ∈ Di with hi(n) = hi occurs with s. Note that for this definition we do not require n ∈ hi.

Analogously, we say that the strategy si ∈ Si allows the information set hi to occur if there is

a strategy profile s−i ∈ S−i of the other players (and possibly nature) such that hi occurs given

the strategy profile (si, s−i).

Figure 9: Illustration of Occur vs. Reached

The following two examples will help to clarify the definition and its difference to the notion
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of a strategy reaching a node/information set. Consider first the example in Figure 9. There

are two trees, T̄ ≻ T , and two players, 1 and 2. Player 1 moves first. If she moves left in tree

T̄ , then player 2 remains unaware of her middle action. This is shown in Figure 9 by the blue

arrow and disk (i.e., information set h in T ) upon player 1 moving left. Otherwise, if player

1 moves right in tree T̄ , player 2 becomes aware of middle (i.e., information set h′′). (Player

1’s initial information sets are indicated by disks with green dashed boundaries.) Consider the

strategy of player 1 indicated by the red dashed edges. This strategy allows only nodes n′′′ and

n′ to be reached. As player 1 moves first, any strategy profile s of players which includes the

above strategy for player 1 will also reach n′′′ and n′. Yet, the nodes that are allowed to occur

with this strategy are n′′′ and n. Again, n′′′ and n will also occur given strategy profile s as

player 1 moves first. Thus, this example shows that the nodes reached (resp., a strategy allows

to be reached) may differ from nodes occurring (resp., a strategy allows to occur). Note though

that they are not disjoint and that this intersection contains a node n′′′ in the upmost tree T̄ .

In terms of information sets, the strategy profile s reaches only h′ but the only information set

occurring with this strategy profile is h. Thus, the example demonstrates that the information

sets reached by a strategy profile may even be disjoint from the information sets occurring.

Figure 10: Another Illustration of Occur vs. Reached

The example in Figure 9 has the feature that if an information set is reached (resp., occurs)

with a strategy then also a node in this information set is reached (resp., occurs). With respect

to the notion of occurring, this may not be the case in general as the next example shows. In

Figure 10 there are also two trees, T̄ and T . Obviously, tree T̄ is more expressive than T as it

contains also the right action for player 1 (and all actions that follow). Player 2 is unaware of
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player 1’s right action and remains unaware of it even if player 1 takes the right action. This

is indicated by the blue information set belonging to player 2 in tree T . That is, even if player

1 chooses right, player 2 thinks that left has been played by player 1. Consider the strategy of

player 1 indicated by the red dashed edges and let s again denote a strategy profile of players

that includes the above strategy of player 1. With respect to nodes, the strategy profile s

reaches n′ and n′′. Yet, only n′ occurs with this strategy profile. With respect to information

set h, it is both reached and occurs given strategy profile s. Note though that h occurs despite

the fact that its only element node n′′ does not occur with the strategy profile s. This is not a

defect of the notion of a node/information set occurring but simply reflects the fact that in a

game with unawareness the node occurring may not be congruent with what the player believes

to occur in her state of mind. Note though that a player is not deluded either as she just misses

an important fact rather than “making things up”.

We summarize the examples:

Remark 3 In a game of the extensive form with unawareness, if s reaches n then it is not

necessarily the case that n occurs with s. Similarly, if n occurs with s then it is not necessarily

the case that s reaches n. Moreover, information set h may occur with a strategy profile s even

though n with h = {n} does not occur with s.

For the upmost tree T̄ the following observation follows directly from the definitions:

Remark 4 Consider a game of the extensive form with unawareness with the upmost tree T̄ .

A strategy profile s reaches n ∈ T̄ if and only if n occurs with s.

The observation means that the notions of node reached and node occurring with a strategy

really depend on how these notions apply to less expressive trees T ≺ T̄ . The notion of

“reached” invokes the T -partial strategies to determine which node in T is reached and is thus

a more subjective notion (from the point of view of a player who considers tree T and lower

trees). The notion of “occur” invokes actions induced by the strategies in the highest possible

tree. Thus it models the “actual” or “objective” play.

The following corollary follows now directly from the fact that any standard game of the

extensive form (i.e., without unawareness) features just one tree.

Corollary 1 In a standard game of the extensive form (i.e., without unawareness), a strategy

profile s reaches n if and only if n occurs with s.

We extend the definitions of information sets occurring to behavior and mixed strategies in

the obvious way by considering nodes/information sets occurring with strict positive probability.
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Let N(s) denote the set of nodes in N that are reached with strategy profile s. Moreover,

denote by O(s) the set of nodes in N that occur with strategy profile s. We can now relate the

notions of a node being reached and a node occurring with the following lemma:

Lemma 2 Consider a game of the extensive form with unawareness. For any player i ∈ I0 and

strategies si, s
′
i ∈ Si, if N(si, s−i) = N(s′i, s−i) then O(si, s−i) = O(s′i, s−i) for any s−i ∈ S−i.

The converse does not necessarily hold.

Proof. For all s−i ∈ S−i, if N(si, s−i) = N(s′i, s−i) then N(si, s−i) ∩ T̄ = N(s′i, s−i) ∩ T̄ .
By Remark 4 O(si, s−i) ∩ T̄ = N(si, s−i) ∩ T̄ and O(s′i, s−i) ∩ T̄ = N(s′i, s−i) ∩ T̄ . Hence,

O(si, s−i) ∩ T̄ = O(s′i, s−i) ∩ T̄ . By definition of node occurring, O(si, s−i) = O(s′i, s−i).

For the converse, we show a counterexample. Consider the extensive with unawareness in

Figure 9. Further, let s1 ascribe action “left” in tree T̄ and “right” in tree T . Moreover, let s′1
ascribe action “left” both in tree T̄ and T . Then information set h occurs both with s1 and s′1.

In fact, O(s1, s−1) = O(s′1, s−1) for any s1 ∈ S1. Yet, only strategy s′1 reaches h in T while s1

reaches h′ in T . □

For any node n, any player i ∈ I0, and any opponents’ profile of strategies s−i (including

nature if any), let o(n | βi, s−i) and o(n | σi, s−i) denote the probability that node n occurs

with (βi, s−i) and (σi, s−i), respectively.

Remark 5 In a game of the extensive form with unawareness, it is not necessarily the case

that for each tree T ∈ T, o(· | σi, s−i) defines a distribution over terminal nodes Z ⊆ T . E.g.,

in the example of Figure 10, no terminal node of T occurs with the strategy of player 1 indicated

by the red dashed line. Thus, o(· | σi, s−i) may not only be subadditive but may even assign zero

to the set of all terminal nodes in a given game tree. It is though a probability distribution over

nodes in the upmost tree T̄ .

We use the notion of a node occurring to define another notion of equivalence between

strategy that we dub realization-equivalent. For any player i ∈ I0, a mixed strategy σi and a

behavior strategy βi are realization-equivalent if for every profile of opponents’ strategies s−i ∈
S−i and every node n ∈ N of the game of the extensive form with unawareness o(n | σi, s−i) =

o(n | βi, s−i). Since information sets can be viewed as functions of nodes, realization-equivalent

strategies are also realization-equivalent with respect to the probability of information sets

occurring. This is relevant because information sets model also the player’s state of mind. We

would like to assure that strategies are also equivalent with respect to the states of mind that

may arise along the play.

Remark 6 If two strategies are realization-equivalent then the same information sets occur

with the same probabilities with both strategies.
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Lemma 3 In any game of the extensive form with unawareness with perfect recall, if σi and

βi are equivalent to each other, then they are also realization-equivalent.

Proof. For any σi ∈ ∆(Si), βi ∈ Bi, s−i ∈ S−i, T ∈ T, n ∈ T , o(n | σi, s−i) = ρ(n′ | σi, s−i)

and o(n | βi, s−i) = ρ(n′ | βi, s−i) for n′ ∈ T̄ such that (n′)T = n. Let βi be equivalent to σi.

Then the conclusion follows from Theorem 1. □

Theorem 1 and Lemma 3 now imply immediately the following corollary:

Corollary 2 In every game of the extensive form with unawareness, if player i has perfect

recall, then for every mixed strategy of player i there exists a realization-equivalent behavior

strategy.

4.2 T-Partial Games and T-Partial Strategies

We return to the fact that in games of the extensive form with unawareness, strategies may not

only be an object of choice for a player, but also an object of belief of other players.

Let ST
i (n) be the set of all T -partial strategies of player i that reach n, where one should

note that Tn ⪯ T . That is, si ∈ ST
i (n) where T ⪰ Tn if and only if there exists s−i ∈ ST

−i

such that n is on the path of play in Tn given the profile of players’ actions and nature’s moves

(sTn
j (hj(n

′)))j∈P (n′) in nodes n′ ∈ Tn.

Note that a T -partial game is a game of the extensive form with unawareness in which the

join of the join-semilattice of trees is T . Thus, Lemma 1 implies immediately the following

corollary:

Corollary 3 Consider a game of the extensive form with unawareness Γ. If Γ satisfies perfect

recall (i.e., I6), then for any player i ∈ I, n ∈ N with hi(n) ∈ Hi, and n
′ ∈ hi(n), S

T
i (n) =

ST
i (n

′) for any T ⪰ Tn.

This corollary is relevant because we can view strategies of a player as objects of beliefs of

other players. Yet, their beliefs are bounded by their awareness. That is, if player i arrives at

information set hi, then her awareness level is given by Thi
, the tree that contains information

set hi. Thus, she forms beliefs about player j’s Thi
-partial strategies.

Theorem 1 implies now immediately the version for T -partial strategies.

Corollary 4 In every game of the extensive form with unawareness, if player i has perfect

recall, then for every T -partial mixed strategy of player i there exists an equivalent T -partial

behavior strategy, for T ∈ T.
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The original Kuhn Theorem is now a corollary for T being a least expressive tree or T being

singleton.

It is possible to also define a notion of node occurring with a T -partial strategy profile. Yet,

such a definition is not very meaningful as the notion of a node occurring aims to characterize

nodes that actually (or “objectively”) occur. To determine such nodes, it is crucial to consider

which nodes are reached in the upmost tree T̄ . T -partial strategies, with T ≺ T̄ , are by

definition silent on it. Yet, every T -partial strategy can be extended to a strategy on the entire

join-semilattice of trees T. Such an extension is typically not unique. The nodes occurring will

then depend which extension is considered.
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