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Abstract

We study dynamic decentralized two-sided matching where players’ preferences evolve

due to unanticipated experiences. Stability requires no pairwise common belief in block-

ing, but unanticipated experiences can destabilize matchings. We show the existence of

self-confirming outcomes that are stable and do not lead to unanticipated experiences. We

propose a decentralized matching process that prioritizes mutual optimal blocking pairs

with probability 1−ε and picks any other optimal blocking pair with ε, representing market

frictions. For convergence to self-confirming stable outcomes in every matching market,

frictions are necessary even without unawareness. We extend our results by allowing com-

munication and show convergence to flirt-proof self-confirming outcomes.
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1 Introduction

Many matching problems such as whom to marry, which school to choose, which profession

to enter, where to take up a residency etc. involve transformative experiences (Paul, 2014)

that change who we are, our beliefs, the things and issues we care about, and our preferences.

These preference changes have implications for the stability of matchings. For instance, in

the US marriage market, 43% of ever-married couples were divorced or widowed, and 23%

of married couples are remarried couples (Livingstone, 2014). During marriage, spouses may

become aware of intolerable attributes of the partner that they were previously oblivious to.

Or they may experience events in the family and workplace such as addiction, unemployment,

domestic violence, mental health issues etc., some of which can only be fully grasped once

experienced. For instance, marriage often involves parenting, itself a transformative experience,

with profound changes in preferences as spouses become parents. Svar and Verner (2008) found

a negative causal impact of children on relationship duration in Denmark.

Importantly, the transformative experiences, consequent preference changes, and implica-

tions for the matchings cannot be completely anticipated and comprehended before they are

experienced. Again taking the marriage market as an example, Baker and Emery (1993) report

that the median response to the question asking a non-representative sample of marriage license

applicants to estimate the fraction of US couples who marry will divorce was 50%, while the

median response assessing the likelihood that they personally would divorce was 0%. Maher

(2003) finds similar numbers of 52% and 10% respectively, in non-representative samples of the

general population, and 48% and 17%, respectively, for law students. Svarer and Verner (2008)

find that the first child but not later children are associated with the dissolution of a relation-

ship, pointing to the causal effect of unanticipated rather than anticipated events surrounding

parenting on divorce.1

How should we understand the dynamics and stability of matching markets with trans-

formative experiences and unanticipated preferences changes? The elegant standard matching

model of Gale and Shapley (1962) (see Roth and Sotomayor, 1990) gives little guidance as

it is static. Models of decentralized matching processes (e.g., Knuth, 1976, Roth and Vande

Vate, 1990, Ackermann et al., 2008, Rudov, 2024) focus on the path to stability without con-

sidering that experiences in matchings can lead to preference changes. With a few exceptions

(e.g., Lazarova and Dimitrov, 2017, Chen and Hu, 2020), these approaches also lack incomplete

information about preferences. Recent interesting models of matching under incomplete infor-

mation allow mostly only for one-sided incomplete information, are static, and unrealistically

assume that agents can anticipate all relevant future experiences (e.g., Liu, 2020, Bikhchandani,

1There is evidence from other matching markets as well. For example in the labor market, on average among
baby boomers, men held 12.8 jobs and women held 12.5 jobs from ages 18 to 56 (U.S. Department of Labor,
2023). Using data from employees in a financial institution, Holtom et al. (2017) state that employees report
a substantial number of unanticipated shocks, both personal and organizational, and that only unanticipated
shocks were significant predictors of staff turnover while none of the anticipated shocks were.
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2017, Liu et al., 2014, Pomatto, 2022, Forges, 2004). Because of imperfect information, these

models require also sophisticated solution concepts that make use of information revealed from

absence of blocking and from counterfactual blocking, which add to the complexity of apply-

ing and analyzing matching under incomplete information. In order to capture transformative

experience with unanticipated preference changes, we develop dynamic matching games under

unawareness but perfect information in Section 3. Unawareness refers to the lack of conception

rather than the lack of information and thus provides us with a robust notion of being “unan-

ticipated”. We make use of unawareness structures introduced by Heifetz, Meier, and Schipper

(2006, 2008, 2013)2 to capture asymmetric unawareness among players but simplify them to

the case of perfect information with respect to what players are aware of. The focus on perfect

information and asymmetric awareness means that each player has correct information about

everything she is aware of including correct information about the other players’ awareness to

the extent that she herself is aware of it. The assumption allows us to avoid the complications

of matching under imperfect information. The unawareness structures are complemented with

finite state machines that model the change of awareness in experienced matchings and the

resulting preference changes.3 Rather than allowing any arbitrary preference changes, we only

consider preference changes due to players becoming aware of events during matchings.

We adapt the notion of stability to asymmetric unawareness by requiring absence of pairwise

common (point)-belief in blocking. This reflects the idea that individual willingness to block,

even when it coincidentally occurs with the blocking partner, by itself may not necessarily

result in a new match but it takes the agreement of a pair to block. Such a notion of stability

is consistent with Wilson’s (1978) notion of the coarse core that he introduced for exchange

economies with asymmetric information and that has been extended to coalitional transferable

utility games with unawareness by Bryan, Ryall, and Schipper (2022). Because experiences in

a matching, even in a stable matching, can lead to changes in awareness and thus preferences

changes, stability of the matching is not enough as a solution concept in the dynamic matching

game with unawareness. We also need that awareness and thus preferences do not change in

the stable matching. In other words, the state determining awareness and thus preferences

must be absorbing (w.r.t. the finite state machine modeling the awareness dynamics based on

experiences in matchings). A self-confirming outcome is a pair of a matching and state such

that the matching is stable w.r.t. awareness and thus preferences at the state, and the state is

2There are interesting alternative approaches to modeling unawareness; for a survey, see Schipper (2015).
Unfortunately, Modica and Rustichini (1999) and Li (2008) are unsuitable because they are confined to a single
agent. Fagin and Halpern (1988) would require a syntactic specification of what agents could be aware of.
Feinberg (2021) would require us to explicitly model infinite sequences of views of the game. We are not aware
of any prior attempt to modelling unawareness in matching with any framework. We choose Heifetz, Meier, and
Schipper (20006, 2008, 2013) because it is a general approach to modeling unawareness that is practical and
arguably closest to the extant modeling paradigm of game theory since it ‘just’ replaces the familiar type space
with an unawareness structure.

3Our class of dynamic matching games with unawareness have the flavor of stochastic games, another invention
by Shapley (1953), in non-cooperative game theory except that ours are cooperative games of matching, state
transitions are deterministic, and we allow for asymmetric unawareness.
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absorbing given the matching (see Section 4).4

To model the process of matching and re-matching, we first revisit the convergence of decen-

tralized matching processes to stability for fixed preferences without unawareness in Section 2.

Knuth (1976) showed that a deterministic process of satisfying blocking pairs may lead to cy-

cles. However, his example is unnatural in the sense that when there are multiple blocking

pairs at a stage, he satisfies a blocking pair that is not mutually optimal. A blocking pair

is optimal for a player if it is the best blocking pair for the player. It is mutually optimal if

it is the best blocking pair for both players. In markets without frictions, we would expect

that mutually optimal blocking pairs are satisfied whenever they exist. The example by Knuth

(1976) leaves open the conjecture that a process of satisfying mutually optimal blocking pairs,

when they exist, leads to the stability. We show with a new example that this is not the case.

This implies that for the process of randomly picking blocking pairs to converge to stability as

in Roth and Vande Vate (1990), it is necessary that strict positive probability is assigned to

satisfying blocking pairs that are not mutually optimal blocking pairs. This yields an important

corollary: Frictions are necessary for decentralized matching processes to converge to stability

in any matching market. This is contrary to the intuition in economics that markets function

best in the absence of frictions.

Armed with the insights from our study of decentralized matching processes with full aware-

ness, we introduce in Section 4 a decentralized matching process that starts with any unstable

matching, satisfies a randomly picked mutually optimal blocking pair with probability 1− ε if

it exists, and satisfies an optimal blocking pair otherwise. W.r.t. states (and hence awareness),

the dynamics follows the finite state machine mentioned above. We show that this decentralized

process converges to a self-confirming outcome. Moreover, we demonstrate by example that in

such a self-confirming outcome, players may remain unaware.

In real life, awareness may not just be raised via experiences in matches but also through

communication. In Section 5, we extend the model to communication by allowing players to

raise the other players’ awareness with the intent to create pairwise common belief in blocking

(i.e., “flirting”). Formally, this is modeled with another finite state machine. Communication

can have two kinds of effects in our model: First, because it potentially raises the other players’

awareness, it can change their preferences and thus create blocking pairs. Second, it may raise

awareness in such a way to augment blocking pairs with pairwise common belief in blocking. In

both cases, such communication may invite further communication, leading to further changes

of awareness, beliefs, and preferences etc. A flirt-proof stable outcome consists of a matching

and state such that communication does not change the state given the matching and the

matching is stable given the state.5 When flirt-proof stable outcome is absorbing (w.r.t. the

4Our terminology is inspired by self-confirming equilibrium in non-cooperative game theory, which are out-
comes in which players maximize expected utility w.r.t. beliefs consistent with their observations and these
observations are generated by the play in equilibrium (see for instance Fudenberg and Levine (1993) and Batti-
galli and Guaitoli (1997) for games without unawareness and Schipper (2021) for games with unawareness).

5Flirt-proof stability is reminiscent of extensions of Wilson’s (1978) core concepts for exchange economies
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finite state state machine modeling changes in awareness given the experience in matchings),

then we call it a flirt-proof self-confirming outcome. We show convergence of our decentralized

matching process with communication to flirt-proof self-confirming outcome and that it refines

the set of self-confirming outcomes.

It is often argued that divorce improves well-being as it avoids the need for estranged

spouses to suffer through a marriage. Longitudinal studies of divorce do not find clear-cut

systematic improvement of well-being or mental health (Spanier and Furstenberg, 1982, Lucas,

2005, Symoens et al., 2013). While divorce allows one to escape a match, it is far from clear that

the subsequent dynamic rematching process leads to a better outcome. One might hypothesize

that the person initiating a divorce, the divorcer, should be better off w.r.t. her changed

preferences while the person that is divorced, the divorcee, might become worse off as he/she

loses her/his partner that was matched in the prior stable matching. While earlier studies

(Spanier and Furstenberg, 1982) find no evidence for improved well-being of the divorcer, more

recent studies (Symoens et al., 2013) find a significant positive effect of being the one initiating

the divorce. We show in Section 6 that the welfare of divorcers can go in any direction even

for the same matching game and same initial conditions. That is, divorcers may end up better,

equivalent, or worse off w.r.t. their preferences after an awareness change. The same we show

for the divorcee. So in terms of welfare effects of divorce, anything goes.

In the final Section 7, we discuss the effect of infidelity. We also discuss how players can

be confused about other players in self-confirming outcomes leading to (stable) awareness of

unawareness (Schipper, 2024). Finally, we discuss the related literature.

Throughout the paper, we phrase the model as a marriage market because we believe that

the marriage market is the bilateral matching market without transfers that is best understood

in the literature. Moreover, it provides us a concrete context for interpreting for our modeling

assumptions. We believe that many features of our model would extend to other matching

markets as well. Obviously do not claim to capture all features the marriage market in real life.

2 Decentralized Matching (without Unawareness) Revisited

In this section, we revisit standard decentralized matching without unawareness in order to

show that arbitrarily small frictions are necessary for stable outcomes to emerge in decentralized

randommatching. This motivate our specification of the decentralized randommatching process

that we use in later sections on matching with unawareness.

Consider a standard two-sided marriage matching market with non-transferable utility (and

without unawareness) ⟨M,W, (≻m)m∈M , (≻w)w∪W ⟩ with a nonempty finite set of men M , a

nonempty finite set of women W , and for each man m ∈ M , ≻m is a strict preference relation

under asymmetric information, such as the fine core, that allow for various forms of information revelation; see
Forges and Serrano (2013) for a survey.
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over W ∪ {m} while for each woman w ∈ W , ≻w is a strict preference relation over M ∪ {w}.

A matching is a one-to-one function µ : M ∪W −→ M ∪W such that µ(m) = w if and only

if µ(w) = m. If for i ∈ M ∪W , µ(i) = i, then i is unmatched. Given a matching µ, a man m

and a woman w form a blocking pair if µ(m) ̸= w, m ≻w µ(w), and w ≻m µ(m). That is, m

and w form a blocking pair if they are not matched to each other given µ and they prefer each

other over their current match, respectively. A matching µ is individually rational if µ(i) ⪰i i

for all i. A matching µ is stable if it is individually rational and there is no blocking pair.

Consider an initial matching µ and a decentralized process of successively satisfying blocking

pairs. A blocking pair is satisfied if they leave their current match and are match to each other,

leading to a new matching. When does a process satisfying blocking pairs lead to a stable

matching?

2.1 Knuth’s Cycle

Knuth (1976) showed with the help of an example that the decentralized process of satisfying

blocking pairs may not lead to a stable matching. We briefly present his cyclic example and

discusses its weaknesses.

Example 1 (Knuth, 1976) Consider M = {m1,m2,m3} and W = {w1, w2, w3} with strict

preferences given by the following rank order lists (from most preferred to least preferred,

respectively):

≻m1 : w2, w1, w3

≻m2 : w1, w3, w2

≻m3 : w1, w2, w3

≻w1 : m1,m3,m2

≻w2 : m3,m1,m2

≻w3 : m1,m3,m2

Knuth’s (1976) example involves a cycle of eight matchings.6 Let µ1 =

(
m1 m2 m3

w1 w2 w3

)
be the first matching. That is, in matching µ1, man m1 is matched to woman w1, man m2 is

matched to w2, etc. This matching is not stable because there are blocking pairs (m1, w2) and

(m3, w2). Satisfying (m1, w2) leaves their original matched partners, w1 and m2, unmatched

and leads a new matching µ2 =

(
m1 m2 m3 w1

w2 m2 w3 w1

)
. Subsequent matchings of the process are

shown in the bipartite graphs in Figure 1, where each matching is a bipartite graph, a match is

represented with a solid line, and all blocking pairs are indicated with either dashed or dotted

lines. The solid triangles represent the blocking pairs that are satisfied in order to reach the

6We use the exposition of Knuth’s example from Roth and Vande Vate (1990), as it uses the prevalent
notations while the original exposition does not.
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next matching.

Figure 1: Knuth’s Cycle

As shown in Figure 1, when we satisfy blocking pairs in the sequence indicated by solid

triangles, the process loops back to the initial matching after eight rounds. Thus, the example

shows that deterministic decentralized matching processes can lead to cycles that prevent the

emergence of a stable matching. Deterministic refers to the fact that when there are multiple

blocking pairs, we do not choose one randomly to satisfy but pick a particular with probability

one. □

At a second glance, the Knuth’s example is not fully convincing because it involves satisfying

a sequence of rather unnatural blocking pairs. For example, in order to create Knuth’s cycle, at

matching µ1 the blocking pair (m1, w2) needs to be satisfied instead of blocking pair (m3, w2).

Both blocking pairs involve woman w2. Given that potentially both men, m3 and m2 compete

for being matched to her, it is much more natural to satisfy blocking pair (m3, w2) because w2

prefers m3 over m1. If w2 is asked to rematch, she would surely pick m3 instead of m1.

In order to formalize our observation, we follow Bennett (1994) in saying that pair (i, j) is

the optimal blocking pair for i at matching µ if j is i’s most preferred individual among the set

of individuals who forms a blocking pair with agent i at the matching µ. Furthermore, we call

(i, j) a mutually optimal blocking pair at µ if it is an optimal blocking pair for both i and j at
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µ. The mutually optimal blocking pairs are represented in Figure 1 by the dotted lines.

Knuth’s cycle avoids choosing the optimal blocking pairs whenever they exist, which is in

every round. We think this is very unnatural because in a frictionless marriage market optimal

blocking pairs should be able “to meet” and consequently form a match. If in Knuth’s example

a mutually optimal blocking pair is chosen at any round, the process is guaranteed to get out of

the cycle. For example, if we satisfy the mutually optimal blocking pair (m3, w2) at µ1 instead

of (m1, w2), we reach the matching µ′
2 =

(
m1 m2 m3 w3

w1 m2 w2 w3

)
, which has only one blocking

pair, (m2, w3). Satisfying (m2, w3) leads to a stable matching µ′
3 =

(
m1 m2 m3

w1 w3 w2

)
. Thus,

while Knuth’s example demonstrates that deterministic decentralized matching may lead to a

cycle, it leaves open the possibility that deterministic decentralized matching in which more

naturally at each step a mutual optimal blocking pair is satisfied, whenever it exist, leads to a

stable outcome. Unfortunately, we show in the next section that this is not the case.

2.2 A Cycle with Mutually Optimal Blocking Pairs

In this section, we improve upon Knuth’s cycle. We present a new example with a cycle that

involves satisfying mutually optimal blocking pairs. At every stage, there exists a unique mu-

tually optimal blocking pair. When satisfying the unique mutually optimal blocking pair at

every stage, the process ends up in a cycle. Compared to Knuth’s cycle, we need now four

participants on each side of the market.

Example 2 Consider a marriage market with four men M = {m1,m2,m3,m4} and four

women W = {w1, w2, w3, w4}, with the strict preference profiles, respectively, given by the rank

order lists:
≻m1 : w2, w4, w3, w1

≻m2 : w4, w2, w1, w3

≻m3 : w1, w3, w2, w4

≻m4 : w3, w1, w4, w2

≻w1 : m1,m2,m4,m3

≻w2 : m4,m3,m2,m1

≻w3 : m2,m1,m3,m4

≻w4 : m3,m4,m1,m2

Let the first matching be given by µ1 =

(
m1 m2 m3 m4

w2 w1 w3 w4

)
. It has exactly one blocking

pair (m2, w2), which is also a mutually optimal blocking pair. Satisfying this blocking yields the

second matching µ2 =

(
m1 m2 m3 m4 w1

m1 w2 w3 w4 w1

)
. Subsequent steps are shown in the sequence

8



of bipartite graphs (each representing a matching) in Figure 2. After nine rounds of satisfying

Figure 2: Cycle with Unique Mutually Optimal Blocking Pairs Only

the unique mutually optimal blocking pairs, respectively, we reach the matching µ10 = µ2,

completing the cycle. This example improves Knuth’s example by demonstrating that even

when satisfying unique mutually optimal blocking pairs at each step of the process, we can get

into a cycle. □

More generally, we conclude:

Proposition 1 There does not exist a decentralized process of satisfying blocking pairs that

always chooses mutually optimal blocking pairs when they exist and always reaches a stable

matching.

Kirill Rudov kindly informed us he has concurrently and independently shown a similar

observation (Rudov, 2024, Proposition 4 in the online appendix). His counterexample makes

use of a five-by-five market while we our counterexample involves just a four-by-four market.
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2.3 Random Paths to Stability

Prior section showed that we need to go beyond deterministic processes in order to guarantee

stable outcomes in decentralized matching markets. Roth and Vande Vate (1990) showed that

we can reach stable outcomes when a process that randomly picks among blocking pairs. In

particular, they showed that starting from an arbitrary matching µ, there exist a finite sequence

of matchings µ1, ..., µk such that µ = µ1 and µk is stable, and for µi, i = 1, ..., k − 1, there is a

blocking pair (mi, wi) that if satisfied yields matching µi+1. As a corollary, they show that the

process of satisfying randomly chosen blocking pairs will converge to a stable matching with

probability 1.

Our example in Section 2.2 shows that the random process of Roth and Vande Vate does

not always choose a mutually optimal blocking pair even when they exist. Thus, we conclude

that the result by Roth and Vande Vate (1990) cannot be strengthened to prioritizing mutually

optimal blocking pairs (if they exist). More formally, our counterexample together with Roth

and Vande Vate (1990) implies:

Proposition 2 The process of satisfying randomly chosen blocking pairs must put positive prob-

ability on sub-optimal blocking pairs (where at least one of the involved agent prefers another

blocking pair) in order to converge to a stable matching.

This observation has a corollary of profound economic significance that to our knowledge

is missing so far in the literature: Any decentralized matching process reaching stability in

every matching market must necessarily have frictions that sometimes prevent the satisfaction

of mutually optimal blocking pairs. This observation runs counter to standard economic wisdom

that frictions hamper the functioning of decentralized markets. In contrast, small frictions are

necessary for reaching stable matchings in every decentralized matching market. In a separate

online-appendix, we present another application of our cyclic example to entry in matching

markets.

2.4 Arbitrarily Small Frictions are Enough

While we just have shown that frictions are necessary to reach stable outcomes in decentralized

random matching, we will now show that we can make these frictions arbitrarily small.

We define the unperturbed process as follows: Starting from an arbitrary matching, if this

matching is stable, no change occurs; if mutually optimal blocking pair(s) exist(s), satisfy one of

them with equal probability; otherwise, satisfy one of the optimal blocking pair(s) with equal

probability. Note that any unstable matching will have at least one optimal blocking pair.

Apply the same rules to the next matching.

To introduce frictions, consider a perturbed process defined as follows: Starting from an

arbitrary matching, if this matching is stable, no change occurs; if mutually optimal blocking

10



pair(s) exist(s), with probability 1− ε select randomly one mutually optimal blocking pair and

satisfy it, and with probability ε satisfy a randomly selected optimal blocking pair that is not

mutually optimal; otherwise, satisfy a randomly selected optimal blocking pair. Apply the same

rules to the next matching.

For the unperturbed process, both stable matchings and cycles formed by satisfying unique

mutually optimal blocking pairs are absorbing sets. However, we argue that for an arbitrarily

small ε > 0, which captures frictions that prevent the matching of mutually optimal blocking

pairs, the perturbed process converges to a stable matching in finite time with probability 1.

Given a marriage market ⟨M,W, (≻i)i∈M∪W ⟩, cycle(s) formed by satisfying unique mutually

optimal blocking pairs at each step may or may not exist. If there is no such cycle, our claim

is trivially true. If there exists such a cycle, then conditional on entering such a cycle, the

probability that the process stays in this cycle for exactly k period is (1 − ε)k−1ε. Hence the

probability that the process stays in this cycle forever is limk→∞(1− ε)k−1ε = 0, which means

that the process leaves the cycle in finite time with probability 1. After leaving the cycle, the

process might come back to this cycle or enter another cycle. However, the same argument

applies, and the process leaves the cycle again in finite time with probability 1. As soon as

the process catches one of Ackermann et al. (2008)’s optimal blocking pairs, it is trapped in

a basin of attraction of a stable matching. Note that by the ε-events, any optimal blocking

pair has a strict positive probability. Thus, we can make use of the result by Ackermann et al.

(2008) according to which for any unstable matching, there exist a finite sequence of satisfying

optimal blocking pairs that leads to a stable matching. The process may potentially spend long

periods in the cycle(s), but only the stable matchings are absorbing

The discussion so far motivates our specification of the decentralized process used in the

following sections. We use a process of randomly chosen blocking pairs that prioritizes mutual

optimal blocking pairs, whenever they exist, but at each step assigns arbitrarily small but

non-zero probability to satisfying just optimal blocking pairs.

3 Matching under Unawareness

We continue to consider a two-sided marriage matching market with non-transferable utility.

However, different from the previous section we now allow for asymmetric awareness among

players. The preference rankings of players can now depend on their awareness. We model

asymmetric awareness using a simplified version of unawareness structures by Heifetz et al.

(2006, 2013). Consider a finite lattice of disjoint finite state spaces (S,⊵). Denote by Š =∨
S∈S S the join of the lattice. For any spaces S, S′ ∈ S with S′ ⊵ S, there is a surjective

projection rS
′

S : S′ −→ S. Projections commute, i.e., for any S, S′, S′′ ∈ S with S′′ ⊵ S′ ⊵ S

we have rS
′′

S = rS
′

S ◦ rS′′
S′ . Moreover, for any S ∈ S, rSS is the identity on S. Let Ω :=

⋃
S∈S S.

We sometimes use ωS to denote the projection of ω to space S. We also write Sω for the space
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that contains ω.

For any S ∈ S and D ⊆ S, denote by D↑ :=
⋃

S′⊵S(r
S′
S )−1(D). An event E ⊆ Ω is defined

by a base-space S ∈ S and a base D ⊆ S such that E := D↑. Denote by S(E) the base-space

of event E. For any S ∈ S, denote by Σ(S) the set of events with base-space S and by Σ the

set of all events.

Awareness affects the preferences of players. To make it explicit, we let preferences of

players and their (point-)beliefs depend on states. To this end, we introduce for each player a

point-belief type mapping ti : Ω −→ Ω such that:

(i) For any S ∈ S, ω ∈ S implies ti(ω) = rSS′(ω) for some S′ ⊴ S.

(ii) For any S, S′, S′′ ∈ S with S′′ ⊵ S′ ⊵ S, ω ∈ S′′, ti(ω) ∈ S′ implies ti(ωS) = rS
′

S (ti(ω)).

(iii) For any S, S′, S′′ ∈ S with S′′ ⊵ S′ ⊵ S, ω ∈ S′′ and ti(ωS′) ∈ S implies Sti(ω) ⊵ S.

Property (i) means that a player at a state cannot be aware of more than what is described

by that state. Moreover, the agent has correct perfect information w.r.t. what she is aware of.

This eliminates imperfect information and false beliefs, bypassing the complications of matching

under imperfect information as well as preventing confounding our results on unawareness with

false beliefs. Properties (ii) and (iii) are consistency conditions on how awareness is related

across states. These properties specialize the properties of type mappings in Heifetz, Meier,

and Schipper (2013) to our case of point-belief type mappings. That is, the structure so far

is a special case of unawareness structures in Heifetz, Meier, and Schipper (2013). Here we

only allow for point-beliefs (rather than non-degenerate beliefs) and unawareness. We refer to

Sti(ω) as player i’s awareness level at state ω. Player i with point-belief ti(ω) can reason over

all states in Sti(ω) and in spaces S ⊴ Sti(ω). In particular, such a player is aware of all events

with a base-space less expressive than Sti(ω).

For simplicity, we restrict unawareness structures by ruling out redundancies.

Assumption 1 (No Redundancies) For any S ∈ S and ω, ω′ ∈ S with ω ̸= ω′, there exist

i ∈ M ∪W such that Sti(ω) ̸= Sti(ω′).

That is, different states imply that some player’s awareness must differ.

We also impose a richness condition according to which any combination of awareness among

players is feasible.

Assumption 2 (Richness) For any profile of spaces (Si)i∈M∪W ∈ S |M∪W |, one for each

player, there exist ω ∈ Š such that for any i ∈ M ∪W , Sti(ω) = Si.

Here the notation (Si)i∈M∪W just means that we have a profile of |M ∪W | spaces, one for each
player, respectively. Moreover, recall that Sti(ω) is the space indicating the awareness level of
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player i at state ω. So the assumption says that no matter what the awareness of all players,

there is a state in the unawareness structure that captures this profile of awareness.

Figure 3: Illustration of an Unawareness Structure with Two Players and Two Characteristics

We illustrate an unawareness structure with point-beliefs for two players satisfying Assump-

tions 1 and 2 in Figure 3. There are two characteristics of players or experiences with players

of which players may or may not be unaware. Thus, we have four spaces. The left space S1

models the situation in which only the first characteristic/experience is expressible, while the

right space S2 models the situations when only the second characteristic/experience is express-

ible. On the upmost space S3 both characteristics/experiences are expressible. In the lowest

space S0 none of the characteristics/experiences are expressible. States model combinations

of awareness of both agents in a consistent way as described by the type mapping and the

conditions imposed on the type mapping. The type mapping of one player (i.e., the man) is

is indicated with blue solid lines while the one of the other player is indicated with pink dash

lines (i.e., the woman). For instance, at state ω10 the woman is aware of both characteris-

tics/experiences, because her type mapping maps ω10 to itself, while the man is only aware of

the first characteristic/experience, because his type mapping maps ω10 to ω4 in S1. At ω4 both

players are aware of the first characteristic/experience. Thus, at ω10 the man point-believes

that the woman is aware of the first characteristics/experiences, which is consistent with his

awareness at ω10 since he can only envision the first characteristic/experience but not the sec-

ond at ω10. More interesting is for instance state ω24. At that state, the man is aware of the

first characteristic/experience only while the woman is only aware of the second characteris-

tics/experiences only because their type mappings map to ω3 and ω6, respectively. At ω3, the
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man correctly believes that the woman is unaware of characteristic/experience 1 while at ω6

the woman correctly believes that the man is unaware of characteristic/experience 2. This is

indicated by the type mappings that map the respective states to ω0. We omit the projections

in order not to clutter the figure further, but they should be clear. For instance, states ω13, ω14

and ω21 all project to ω7. Assumptions 1 and 2 are easy to verify for instance in spaces S1 and

S2 (albeit less obvious in S3). Note that any unawareness structure for correct point-beliefs of

two players and two characteristics/experiences satisfying Assumptions 1 and 2 must look like

Figure 3. With more players, which we need in non-trivial matching games, or more charac-

teristics/experiences, they become more complex. However, in our examples we will often just

focus on the states that are relevant for the feature we aim to illustrate with the example.

Let Pi be the set of all strict preferences over W ∪ {i} if i ∈ M and M ∪ {i} if i ∈ W . For

every player i there is a preference mapping defined by ≻i: Ω −→ Pi. That is, every player at

each state has preferences over players of the other side and outcomes in which (s)he stays alone.

Since preferences shall only be affected by awareness, we require that each player’s preference

mapping is constant within each space/awareness level. That is, for any S ∈ S and ω, ω′ ∈ S,

≻i(ω) = ≻i(ω
′). We assume for simplicity that if for ω ∈ S and ω′ ∈ S′ we have j ≻i(ω) j

′ and

j ≻i(ω
′) j′, then j ≻i(ω

′′) j′ for ω′′ ∈ S ∨ S′. That is, if i prefers j to j′ with awareness level S

and also with awareness level S′, then i also prefers j to j′ with the joint awareness level S∨S′.

Recall that a matching is a one-to-one function µ : M ∪W −→ M ∪W such that µ(m) = w

if and only if µ(w) = m. If for i ∈ M ∪W , µ(i) = i, then i is unmatched. Let M denote the set

of all matchings.

Matchings may allow players to discover new characteristics of players or make unanticipated

experiences that subsequently change their preferences. That is, matchings may lead to changes

in awareness and thus beliefs and preferences. This is modeled via a finite state machine

⟨Ω,M, τ⟩ with transition function τ : Ω×M −→ Ω defined as follows:

(i) For any ω ∈ Š and µ ∈ M, we require τ(ω, µ) ∈ Š such that Sti(τ(ω,µ)) ⊵ Sti(ω) for

i ∈ M ∪W . That is, every player’s awareness can never decrease.

(ii) We extend τ to all states in Ω by for any S ∈ S, ω ∈ Š, and µ ∈ M, τ
(
rŠS(ω), µ

)
=

rŠS (τ(ω, µ)).

Note that we allow i not only to become aware from her/his own match but also from a

change of the matching that does not involve i. Note further that states implicitly encode

four features: First, they encode the point-belief of each player via the type-mapping. Point

beliefs are correct up to differences in awareness. Second, states encode awareness of each

player, also via the type-mapping. The awareness level is given by the space in which the

value of the player’s type is located. Third, states encode preferences of each player via the

preference map. Finally, they encode the transition across states (and thus the change of point-

beliefs, awareness, and preferences of each player) conditional on matchings via the finite state
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machines. Assumption 1 has implications beyond awareness. For transitions, the assumptions

implies that for each profile of awareness and matching, each player has a unique experience

and thus a transition to unique potentially different profile of awareness. I.e., the assumption

rules out the case where the same profile of awareness and matching can give rise to different

experiences for one player.

Definition 1 A finite dynamic two-sided matching game with unawareness is defined by

⟨(S,⊵), (rS
′

S )S′⊵S ,M,W, (ti)i∈M∪W , (≻i)i∈M∪W ,M, τ⟩.

The model introduced so far can be interpreted for instance as modeling unawareness

of preference-relevant characteristics of players and their dynamics. E.g., consider a set of

preference-relevant characteristics. For each subset of characteristics, there is a state space

modeling everything relevant to the players but only pertaining to this subset of characteris-

tics. The lattice order ⊵ on state spaces is induced by set inclusion on the set of characteristics.

A state describes now for each player of which characteristics in the subset he/she is aware

of. For each space, preferences are constant in states because they are driven by the charac-

teristics associated with the state space. All what differs from state to state is the awareness

of characteristics by players. At one state in the state space the player may be aware of all

characteristics associated with the space, while at another state of the state space the player

may by unaware of some and thus “live” in an even less expressive state space. The preference

of the player is now given by his/her preference in the less expressive state space.

4 Self-Confirming Stable Outcomes

In this section, we will define step-by-step our solution concept. Our aim is a solution concept

that features a stable matching given beliefs and stable beliefs given the matching.

For any m ∈ M and w,w′ ∈ W , define [w ≻m w′] := {ω ∈ Ω : w ≻m(ω) w′}. Analogously,

define [m ≻w m′] for any w ∈ W and m,m′ ∈ M . Given matching µ ∈ M, the set of states in

which (m,w) forms a blocking pair is [m ≻w µ(w)]∩ [w ≻m µ(m)]. Similarly, for any i ∈ M ∪W

and matching µ ∈ M, define [i ≻i µ(i)] := {ω ∈ Ω : i ≻i(ω) µ(i)}. This is the set of states

in which player i prefers to stay alone rather than stay with her/his current partner in the

matching µ.

For any event E ⊆ Σ and i ∈ M ∪ W , let Ki(E) = {ω ∈ Ω : ti(ω) ∈ E}, if there exists

ω ∈ Ω such that ti(ω) ∈ E. Otherwise, let Ki(E) = ∅S(E). Ki(E) is the set of states in which

player i believes E. By the properties of the ti, if E is an event in Σ, then Ki(E) is an event.

For any pair (m,w), let Km,w(E) = Km(E) ∩ Kw(E). That is, Km,w(E) is the event that E

is mutual belief among m and w. Finally, let CKm,w(E) =
⋂

n≥1K
n
m,w(E). This is the event

that E is common belief among m and w. These are the usual (pairwise) mutual belief and
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common belief operators specialized to our setting.

In a standard matching model with complete information and full awareness, a matching

is stable if there is no blocking pair. In our setting, there might be a blocking pair without

common belief thereof. Consequently, they have no agreement to block. We say that in the

matching µ ∈ M, at state ω it is common belief among m and w that they form a blocking pair

if ω ∈ CKm,w([m ≻w µ(w)] ∩ [w ≻m µ(m)]).7

Definition 2 (Stability) We say that µ is stable at ω if

(i) there does not exist (m,w) ∈ M ×W such that ω ∈ CKm,w([m ≻w µ(w)]∩ [w ≻m µ(m)]),

and

(ii) there does not exist i ∈ M ∪W such that ω ∈ [i ≻i µ(i)].

That is, we say that µ is stable at ω if there does not exist a pair (m,w) such that at ω it is

common belief among m and w that (m,w) forms a blocking pair. Moreover, there should also

not exist a player who prefers to stay alone over her current match.

In a standard matching model with complete information and full awareness, stable match-

ings are in the core of the matching game. In our setting with asymmetric unawareness, stable

matchings are in the coarse core. The coarse core has been introduced by Wilson (1978) for

exchange economies with asymmetric information. It has been extended to general TU games

with incomplete information and unawareness by Bryan et al. (2022). Similar ideas can be used

to extend it to NTU games with incomplete information and unawareness like our matching

games.

Figure 4: Unawareness Structure of Example 3

Since our stability notion generalizes absence of blocking pairs to absence of pairwise com-

mon belief in blocking, we illustrate this novel feature with a simple example.

7We often just refer to “pairwise common belief” if the pair of players is clear from the context.
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Example 3 There are two men and women each, M = {m1,m2} and W = {w1, w2}. The

preference mappings are given by the following rank order lists:

≻m1 : w1, w2

≻m2 : w1, w2

≻w1 : m1,m2

≻w2 : m1,m2

ω0

≻m1 : w2, w1

≻m2 : w1, w2

≻w1 : m1,m2

≻w2 : m1,m2

ω1

All players have preferences constant in the states except for man m1. The unawareness struc-

ture is depicted in Figure 4. There are two spaces, the richer space S̄ and the poorer space

S. We just focus on the two states relevant to our example, which is ω1 in S̄ and ω0 in S.

(We omit the projections as ω1 projects to ω0.) The type mappings for the point beliefs are

depicted in blue.8 Importantly, at state ω1, man m1’s point-belief is at ω1 while all others have

point-belief ω0. Thus, all except man m1 are unaware.

Figure 5: Stable matching at ω1

Consider now the matching µ0 given in Figure 5. In this matching, man m1 is matched to

w1 while at ω1 he strictly prefers w2 over w1. In fact, they form a blocking pair in the standard

sense. Nevertheless, this matching is stable in our sense at ω1 because at ω1 it is not a common

belief among m1 and w2 that they form a blocking pair. This is because woman w2 is unaware

and believes that man m1 strictly prefers w1 over herself. This example illustrates the difference

between absence of blocking and absence of pairwise common belief in blocking and thus the

difference between the standard notion of stability and our notion of stability. □

Stability itself is not a satisfactory solution in our setting because µ being stable at ω does

not rule out that some players discover something in the matching µ at ω that changes their

preferences and consequently destabilizes the previously stable matching so that they want to

get divorced. For a satisfactory solution, we also need that beliefs are stable given the matching.

Definition 3 We say that a state ω ∈ Ω is absorbing given µ if τ(ω, µ) = ω.

Putting these two ideas together yields our solution concept:

Definition 4 (Self-confirming outcome) We say that an outcome (ω, µ) is self-confirming

if

8From now on we suppress circles to avoid clutter.

17



(i) µ is stable at ω, and

(ii) ω is absorbing given µ.

Figure 6: Unawareness Structure of Example 4

Since the absorbing state given the matching is a novel feature of the solution concept, we

illustrate it with the following simple example.

Example 4 There are two men and women each, M = {m1,m2} and W = {w1, w2}. The

preference mappings are given by the following rank order lists:

≻m1 : w1, w2

≻m2 : w1, w2

≻w1 : m1,m2

≻w2 : m1,m2

ω0

≻m1 : w2, w1

≻m2 : w1, w2

≻w1 : m1,m2

≻w2 : m1,m2

ω1, ω2

All players have preferences constant in the states except for man m1. The unawareness struc-

ture is depicted in Figure 6. There are two spaces, the richer space S̄ and the poorer space

S. We focus on two states in the richer spaces, ω1 and ω2, and one state in the poor space,

ω0. (We omit the projections as they are trivial. Both states ω1 and ω2 project to ω0.) The

type mappings for the point beliefs are depicted in blue. Importantly, at state ω1, man m1’s

point-belief is at ω0. That is, he is unaware of something that obviously effects his preferences

because his preference in states in S̄ differs from his preference at S.

Figure 7: Process of Example 4
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The relevant state transitions are depicted by red arrows in Figure 6. We print the match-

ing(s) that facilitate the state transitions beside the red arrows. To make the process transpar-

ent, we depict the process separately by Figure 7. Let ω1 be the initial state. At that state all

players except m1 believe in ω1. Man m1 believes in state ω0. Let matching µ0 be the initial

matching. It is easy to verify that it is stable given ω1 and also stable given ω0 as there is no

pair who has common belief in blocking. Yet, as argued above, stability is not sufficient for a

satisfactory solution concept. Given state ω1 and matching µ0, man m1 becomes aware as the

process transitions to state ω2 at which m1’s point-belief is correctly ω2. (Note that initially at

ω0 man m1 did not anticipate this transition.) Consequently, m1’s preference changes. At ω2,

m1 and w2 now form a blocking pair, this is common belief (not just among m1 and w2 but

among all players in this case), and thus µ0 is not stable anymore. When satisfying the blocking

pair, both m1 and w2 have to get divorced from their current partners and we reach matching

µ1 (at state ω2). This matching is not stable since both m2 and w1 prefer to be matched to each

other rather than staying single. Thus they form a blocking pair and this is common belief.

Satisfying this blocking pair, we reach matching µ2 (at ω2). This matching is stable given ω2 as

their no blocking pairs. Moreover, state ω2 is absorbing given µ2, i.e., awareness or preferences

do not change given µ2. This example shows that stability of matching at ω1 is not enough

for a solution concept. Our solution concept also requires the state to be absorbing, like at

outcome (µ2, ω2). □

Proposition 3 Every finite dynamic two-sided matching game with unawareness has a self-

confirming outcome.

Proof. (i): Call the two-sided matching game with unawareness at a given state the stage

game. Any stage game of the two-sided matching game with unawareness involves the same

finite number of finite state spaces. Any finite state machine must have absorbing/recurrent

sets. This follows from the fact that every finite Markov chain has an absorbing/recurrent set

and a finite state machine corresponds to a finite Markov chain with probability-one transition

probabilities. What is left to show is that there is an absorbing/recurrent set that is a singleton,

an absorbing state: Consider ω ∈ Š such that Sti(ω) = Š for all i ∈ M ∪W . Such a state exists

in Š by Assumption 2. We have τi(ω, µ) = ω for all µ. To see this, suppose to the contrary

that τi(ω, µ) = ω′ for some ω′ ̸= ω and µ ∈ M. By Assumption 1, there exists i ∈ M ∪ W

such that Sti(ω′) ̸= Sti(ω). Since Sti(ω) = Š, we must have Sti(ω′) ◁ Š. But this contradicts that

assumption that Sti(τ(ω,µ)) ⊵ Sti(ω). We conclude that ω is absorbing.

(ii): Every state ω ∈ Ω pins down a strict preference profile of all agents. Consider the

absorbing state from part (i). By Gale and Shapley (1962), a stable matching in the standard

sense exists, i.e. a matching without a blocking pair. Consequently, there can also be no

common belief in blocking. Hence, it is stable.

By (i) we argued that there exists an absorbing state ω. By (ii), there is a stable match at
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ω. Hence, there exists a self-confirming outcome. □

The proof is straightforward: Awareness can only go up. Once all players are aware of

everything, there must exist an absorbing state. At that state there must exist a stable match

in the standard sense of Gale and Shapley (1962). Absence of blocking pairs means also no

common belief in blocking. Hence, it is also stable in our sense.

Figure 8: Trapped in Unawareness by Marriage

While for showing existence it is enough to argue with the upmost space, there can be ab-

sorbing states and self-confirming outcomes that involve unawareness. In the following simple

example we illustrate how players are trapped by marriage in their unawareness.

Example 5 There are two men and women each, M = {m1,m2} and W = {w1, w2}. The

preference mappings are given by the following rank order lists:

≻m1 : w1, w2

≻m2 : w1, w2

≻w1 : m1,m2

≻w2 : m1,m2

ω0

≻m1 : w2, w1

≻m2 : w1, w2

≻w1 : m2,m1

≻w2 : m1,m2

ω1, ω2, ω3

The unawareness structure is given by Figure 8. At ω1, all players’ point-belief is ω0 in S.

That is, all players are unaware. Let µ0 as in the example earlier, i.e., the matching given in

Figure 5. This matching is stable given ω1 because at that state all players are unaware and

their point-belief is ω0. Thus, there is no pair who has common belief in blocking. Since the ω1

is absorbing given µ0, the outcome (µ0, ω1) is a self-confirming outcome despite all players being

unaware. We also observe in Figure 8 that there would be other matchings like µ1 that would

allow m1 and w2 to become aware (and subsequently matching µ2 that allow the remaining

players to become aware). However, since (µ0, ω1) is absorbing, these states are not reached.
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Players are trapped in unawareness in the marriages. We will return to this example later in

Subsection 7.1 when discussing infidelity. □

More interesting than showing existence of self-confirming outcomes is the process of finding

those self-confirming outcomes with transformative experiences and discoveries in matchings,

leading to changes of preferences, further attempts of trying to find stable matches, further

preference-perturbing discoveries etc. We are interested in a natural decentralized matching

process that leads to self-confirming outcomes. From Section 2 we know that even without

unawareness, it is not straightforward for decentralized matching processes to reach a stable

matching. With asymmetric unawareness, changes of awareness may also lead to changes of

preferences which complicates the process even further.

For any ω ∈ Ω, µ ∈ M and w ∈ W , let

Mw(ω, µ) := {m ∈ M : ω ∈ CKm,w([m ≻w µ(w)] ∩ [w ≻m µ(m)])} ∪ {w : w ≻w(tw(ω)) µ(w)}.

The first term, {m ∈ M : ω ∈ CKm,w([m ≻w µ(w)] ∩ [w ≻m µ(m)])}, is the set of men m for

which it is common belief among w and m at ω and matching µ that m and w form a blocking

pair. The second term, {w : w ≻w(tw(ω)) µ(w)} is nonempty only if woman w prefers to stay

alone at ω rather than with her partner in the matching µ.

We say that at ω and µ, w and i are a (w, i)-commonly believed w-best blocking pair

if i ∈ Mw(ω, µ) and i ≻w(tw(ω)) j for any j ∈ Mw(ω, µ) with j ̸= i. Analogously, define

Wm(ω, µ) and commonly believed m-best blocking pairs. We say that at ω and µ, m and w

are a (i, j)-commonly believed mutual best blocking pair if it is both a (i, j)-commonly believed

i-best blocking pair and (i, j)-commonly believed j-best blocking pair. Of course, our earlier

assumption ensures that either i and j are members of different sides of the market or i = j.

Denote by B(ω, µ) ⊆ M ×W the commonly believed best blocking pairs at ω and µ. Denote

by MB(ω, µ) ⊆ M ×W the commonly believed mutual best blocking pairs at ω and µ.

Lemma 1 For any ω and µ, if µ is not stable at ω, then B(ω, µ) ̸= ∅.

Proof. For any ω ∈ Ω, if µ is not stable, then there exists i ∈ W such that Mi(ω, µ) ̸= ∅
or j ∈ M such that Wj(ω, µ) ̸= ∅ . Note also that since Mi(ω, µ) and Wj(ω, µ) are finite, the

commonly believed i-best blocking pair or the commonly believed j-best blocking pair exist.

Therefore, B(ω, µ) ̸= ∅. □

In contrast to B(ω, µ), the set MB(ω, µ) may be empty even if µ is not stable. To avoid

issue with defining the transition probabilities below, define

M̂B(ω, µ) :=

{
MB(ω, µ) if MB(ω, µ) ̸= ∅
B(ω, µ) otherwise.
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Fix small ε ∈ (0, 1) and define a matching process by transition probabilities P ε such that

for any ω and µ,

P ε(µ′, ω′ | µ, ω) :=



1−ε

|M̂B(ω,µ)|
if µ′ differs from µ by satisfaction of exactly one

pair in M̂B(ω, µ) and τ(ω, µ′) = ω′;

ε
|B(ω,µ)| if µ′ differs from µ by satisfaction of exactly one

pair in B(ω, µ) and τ(ω, µ′) = ω′;

1 if µ′ = µ and µ is stable given ω and τ(ω, µ′) = ω′;

0 else.

We define the matching process by transition probabilities on the product space Ω × M.

This warrants some explanations. Naturally, the process would proceed as follows: Given

a current state ω and awareness/preferences at ω, the current match µ may feature some

blocking pairs w.r.t. preferences at ω. Satisfying some blocking pair (i.e., preferably some

mutual optimal blocking pair) would lead to another match µ′. At this match µ′ and state ω,

there may be discoveries leading to another state τ(ω, µ′) = ω′. At this state and corresponding

awareness/preferences, there might be blocking pairs. Satisfying a blocking pair may lead to

yet another matching µ′′ ... While in this explanation, we let states transit after the transition

of the matches, the above formal description of the process involves a simultaneous transition

of states and matches. It can be thought of just describing the process at every “even” period.

This is well-defined because states move deterministically according to a finite state machine

given the prior state and the new match. The process on Ω × M is not deterministic though

because blocking pairs are selected randomly with (1 − ε) assigned to mutual best blocking

pairs if they exist.

Proposition 4 For any (initial) outcome (µ, ω) and ε ∈ (0, 1), the matching process P ε con-

vergences almost surely to a self-confirming outcome.

Proof. First, we argue that each absorbing set of P ε cannot involve more than one state.

To see this, consider an absorbing set of P ε that involves at least two states. Denote them

by ω∗ and ω∗∗. By the definition of absorbing set, each outcome (consisting both of a state

and a matching) is reachable from any other outcomes in the absorbing set via a finite number

of transitions. Thus, ω∗ must be reachable from ω∗∗ and vice versa. Since for each agent i,

awareness can only increase along the process, we must have Sti(ω∗) = Sti(ω∗∗) for all i. The

assumption of no redundancies, Assumption 1, implies now that ω∗ = ω∗∗.

Second, we argue that each absorbing set of P ε cannot involve more than one matching and

that matching must be stable. Suppose to the contrary that there exists an absorbing set that
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involves an unstable matching denoted by µ1.

Claim: Consider w.l.o.g. µ1 in the absorbing set for ω∗. We claim that there exists a sequence

of matchings µ1, ..., µk, with k ≤ 2|W | · |M |, such that µk is stable, and for each i = 1, ..., k− 1,

there exists a pairwise commonly believed best blocking pair (mi, wi) such that µi+1 is obtained

from µi by satisfying (mi, wi).

To prove the claim note first that the preference profile is fixed by the absorbing state ω∗.

For any women wi, since the preference of women wi is an ordered list over M ∪ {wi} of length

|M | + 1, we consider the order from the worst to the best, with the worst ranking 0 and the

best has rank |M |. Define the payoff of agent wi in matching µ by pwi(µ) = k ∈ {0, ..., |M |} if

µ(wi) is at the kth place of the order. That is, if wi is matched to her most preferred agent in

M ∪ {wi}, then here payoff is |M |.

Let X(µ) be the set of matched women at µ. Define a “potential” function Φ(µ) =∑
w∈X(µ)(|M | − pw(µ)). Note that this potential function is minimized when all women are

matched to their “best” agent on their lists, respectively. Function Φ is bounded above by

|W | · |M | as |X(µ)| ≤ |W | and pw(µ) ≥ 0 for w ∈ X(µ).

To construct a sequence of matchings µ1, ..., µk, we divide it into two phases. The first phase

features the sequence µ1, ..., µ
′ and the second µ′, ..., µk. In the first phase, we move from µi to

µi+1 by satisfying pairwise commonly believed best blocking pairs that involve matched women

only. With each satisfied pairwise commonly believed best blocking pair, Φ decreases by at least

1 because: (1) Starting from µi, if this woman gets rematched to an unmatched man, the set

X(µi+1) = X(µi), and her payoff increases. (2) If she gets rematched to a matched man, then

X(µi+1) ⫋ X(µi) (i.e., her new matching partner leaves his current partner), and her payoff

increases. (3) If she becomes unmatched, her term in the potential function is dropped, and

that term must have been positive before. Hence, at most after |W | · |M | steps, no matched

woman can improve her payoff, which implies that no matched woman has a commonly believed

blocking pair. Furthermore, if there is no pairwise commonly believed blocking pair, there is no

pairwise commonly believed best blocking pair. The first phase terminates with a matching µ′

in which no matched woman has a pairwise commonly believed (best) blocking pair. Observe

that the process P ε allows for above sequence of pairwise commonly believed best blocking pairs

to be satisfied because at any step the process puts strict positive probability on any pairwise

commonly believed best blocking pair at that step. Moreover, we assumed that (µ1, ω
∗) is in

the absorbing set of P ε. Since we reached (µ′, ω∗) with P ε, it implies that (µ′, ω∗) is in the

absorbing set of P ε as well.

In the second phase, suppose we start from the matching µ′. If there is no pairwise commonly

believed blocking pair in µ′ (also among unmatched women), then let µ′ = µk and the second

phase terminates. Otherwise, the second phase continues as follows. Since no matched woman

has a pairwise commonly believed blocking pair in µ′, {(m,w) : µ′(w) ̸= w,ω∗ ∈ CKm,w([m ≻w
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µ′(w)] ∩ [w ≻m µ′(m)])} = ∅. That is, the set of pairwise commonly believed blocking pairs

that involves a matched woman is empty.

Satisfy a pairwise commonly believed best blocking pair of an unmatched woman, (m∗, w∗),

and call the resulting matching µ′′. We argue that in µ′′, no matched woman can have a pairwise

commonly believed blocking pair, i.e. {(m,w) : µ′′(w) ̸= w,ω∗ ∈ CKm,w([m ≻w µ′′(w)]∩ [w ≻m

µ′′(m)])} = ∅. Since the set of matched woman only change by adding w∗ and removing µ′(m∗)

if m∗ is matched under µ′, the set of matched women is now {w : µ′′(w) ̸= w} = {w∗} ∪ {w :

µ′(w) ̸= w} \ {µ′(m∗) : µ′(m∗) ̸= m∗}. Therefore, the set of pairwise commonly believed

blocking pairs that involves a matched woman is now

{(m,w) : µ′′(w) ̸= w,ω∗ ∈ CKm,w([m ≻w µ′′(w)] ∩ [w ≻m µ′′(m)])} =

{(m,w) : w = w∗, ω∗ ∈ CKm,w([m ≻w µ′′(w)] ∩ [w ≻m µ′′(m)])} ∪

{(m,w) : µ′(w) ̸= w,ω∗ ∈ CKm,w([m ≻w µ′′(w)] ∩ [w ≻m µ′′(m)])} \

{(m,w) : w = µ′(m∗) ̸= m∗, ω∗ ∈ CKm,w([m ≻w µ′′(w)] ∩ [w ≻m µ′′(m)])}

We show that the r.h.s. is empty. Consider first the set

{(m,w) : w = w∗, ω∗ ∈ CKm,w([m ≻w µ′′(w)] ∩ [w ≻m µ′′(m)])}.

For w∗, since (m∗, w∗) is her pairwise commonly believed best blocking pair given µ′, she cannot

have any pairwise commonly believed blocking pair after satisfying (m∗, w∗), i.e., {(m,w) : w =

w∗, ω∗ ∈ CKm,w([m ≻w µ′′(w)] ∩ [w ≻m µ′′(m)])} = ∅.

Next consider the set

{(m,w) : µ′(w) ̸= w,ω∗ ∈ CKm,w([m ≻w µ′′(w)] ∩ [w ≻m µ′′(m)])}\

{(m,w) : w = µ′(m∗) ̸= m∗, ω∗ ∈ CKm,w([m ≻w µ′′(w)] ∩ [w ≻m µ′′(m)])}.

This set concerns pairs that involve matched women under µ′ except the women that was

possibly matched under µ′ to the man that got rematched under µ′′.

Recall that for all m ̸= m∗ we have µ′′(m) = µ′(m). Moreover, µ′′(m) ≻m∗(tm∗(ω∗)) µ′(m).

Thus, every man believes that he gets a weakly better match under µ′′. Thus, we have that

for all m ∈ M , {w : w ≻m(tm(ω∗)) µ′′(m)} ⊆ {w : w ≻m(tw(ω
∗)) µ′(m)} (with strict “⊂”

for m∗ and “=” for all m ̸= m∗). Similarly, for all w such that w ̸= w∗ and w ̸= µ′(m∗) (if

µ′(m∗) ̸= m∗), we have µ′′(w) = µ′(w). Thus, every woman who is matched in µ′′ believes that

she gets a weakly better match under µ′′ than under µ′. Therefore, for all w with µ′(w) ̸= w

and w ̸= µ′(m∗), {m : m ≻w(tw(ω
∗)) µ′′(w)} ⊆ {m : m ≻w(tw(ω

∗)) µ′(w)}.

Therefore, if there exists a pair (m,w) with w ̸= µ′(w) and w ̸= µ′(m∗) such that ω∗ ∈
CKm,w([m ≻w µ′′(w)] ∩ [w ≻m µ′′(m)])}, then by the arguments above we must have ω∗ ∈
CKm,w([m ≻w µ′(w)] ∩ [w ≻m µ′(m)])}. However, this contradicts our earlier conclusion from
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the first phase that {(m,w) : µ′(w) ̸= w,ω∗ ∈ CKm,w([m ≻w µ′(w)] ∩ [w ≻m µ′(m)])} = ∅. We

conclude that {(m,w) : µ′′(w) ̸= w,ω∗ ∈ CKm,w([m ≻w µ′′(w)] ∩ [w ≻m µ′′(m)])} = ∅.

The analogous arguments apply inductively to next steps of the second phase. Since only

unmatched woman are able to block in the second phase, men are never left and can only

improve, which can only happen at most |W | · |M | times. When the second phase terminates,

there is no pairwise commonly believed blocking pair, and the matching is stable given ω∗.

Observe that the process P ε allows for a second-phase sequence of pairwise commonly believed

best blocking pairs to be satisfied because at any step the process puts non-zero probability

on any pairwise commonly believed best blocking pair at that step. Moreover, we have al-

ready shown that (µ′, ω∗) is in the absorbing set of P ε. Since we reached (µk, ω
∗) with P ε, it

implies that (µk, ω
∗) is in the absorbing set of P ε as well. This completes the proof of the claim.

The claim implies that each absorbing set of P ε must be a singleton (µ, ω) consisting of an

absorbing state ω given µ and a stable µ given ω. To see this, note that each absorbing set

cannot have more than one matching. Otherwise, each such matchings must be reachable by

the process from each other with a finite number of transitions. This would imply that all these

matchings of the absorbing set are unstable. However, the claim shows that there is a sequence

of matchings allowed by the process leading to a stable matching, a contradiction.

Claim: An outcome (µ, ω) is self-confirming if and only if it is an absorbing outcome of P ε.

To prove the claim, consider first “⇐” direction: Let (µ, ω) be an absorbing outcome of P ε.

Then P ε(µ, ω | µ, ω) = 1. By the construction of P ε, µ is stable given ω and ω is absorbing

given µ. Thus, (µ, ω) is self-confirming.

“⇒”: Let (µ, ω) be self-confirming. Then µ is stable at ω, and ω is absorbing given µ.

Hence, P ε(µ, ω | µ, ω) = 1, i.e. (µ, ω) be an absorbing outcome of P ε. This completes the proof

of the claim.

To complete the proof of Proposition 4, it is enough to note that P ε must converge almost

surely to an absorbing outcome. □

The proof shows first that any absorbing set must exactly involve a single state because

awareness must be constant within each absorbing set. Second, it shows that any absorbing

set can at most involve one matching and this matching must be stable given the state. This

part of the proof slightly extends an argument by Ackermann et al. (2008) to a sequence of

satisfying pairwise commonly believed best blocking pairs.
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5 Allowing for Flirting

The prior solution concept features very conservative blocking behavior. Only if there is com-

mon belief among a pair that they want to block, there is a chance that the pair is selected

for blocking. There are situations in which for instance man m believes that although there is

currently absence of common belief in blocking with women w, if he were to talk to her and raise

her awareness, it would result in common belief in blocking. That is, communication involving

raising awareness is natural in this setting. Such a communication could be a feature of flirting

behavior. Flirting can destabilize outcomes in two ways: First, raising awareness may change

preferences and thus allow for blocking pairs. This is illustrated with the help of the following

example.

Figure 9: Unawareness Structure of Example 6

Example 6 This is a variation of prior Example 4. There are two men and women each,

M = {m1,m2} and W = {w1, w2}. The preference mappings are as before given by the

following rank order lists:

≻m1 : w1, w2

≻m2 : w1, w2

≻w1 : m1,m2

≻w2 : m1,m2

ω0

≻m1 : w2, w1

≻m2 : w1, w2

≻w1 : m1,m2

≻w2 : m1,m2

ω1, ω2

The unawareness structure is depicted in Figure 9. The type mappings are as in Example 4.

What differs are the state transitions. Recall that µ0 is stable given ω1 in Example 4. Now

we have also that ω1 is absorbing given µ0 as shown by the red arrow from ω1 to itself. Thus,

(µ0, ω1) is a self-confirming outcome. However, it can be destabilized by flirting. Observe that

woman w2 has an incentive to raise man m1’s awareness and thus changing his preference in

her favor. This is indicated in Figure 9 by the green transition arrow. This leads to ω2 upon
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which m1 and w2 block, yielding the matching µ1. This is followed by blocking from m2 and

w1, yielding matching µ2, which is stable given ω2. This process is depicted in Figure 10. Since

ω2 is absorbing, we have reached a new self-confirming outcome. However, (µ2, ω2) can not be

destabilized by further flirting. It is a “flirt-proof” self-confirming outcome while (µ0, ω1) is

just a self-confirming outcome (that, as we have shown, is not flirt-proof). □

Figure 10: Process of Example 6

The example shows how flirting can lead to change of preferences through raising awareness

and subsequently a blocking pair and common belief in blocking by this pair of players. A more

subtle effect of flirting pertains just to the last feature. There are situations in which there is

already a blocking pair but no common belief in blocking by this pair (e.g., Example 3). In such

a case, flirting can help creating this pairwise common belief in blocking without any change of

preferences. This is illustrated in the next example.

Figure 11: Unawareness Structure of Example 7

Example 7 This example can be understood as an extension of Example 3. There are two

men and women each, M = {m1,m2} and W = {w1, w2}. The preference mappings are as

before given by rank order lists of the prior Example 6. The unawareness structure is depicted

in Figure 11. Note that different from the prior example, at ω1 all players are unaware except

man m1. This is like in Example 3. Recall that µ0 is stable given ω1 in Example 3 because

there is absence of pairwise common belief between m1 and w2 of blocking. However, at ω1,

man m1 could communicate with w2 and raise her awareness, as indicated by the green state

transition. At ω2 both are now aware and now m1 and w2 do not just form a blocking pair
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but there is also common belief among them of blocking. The resulting match µ1 leads to the

final match µ2 at ω2, which is a self-confirming outcome. This outcome (µ2, ω2) can not be

destabilized by further flirting. It is a “flirt-proof” self-confirming outcome while (µ0, ω1) is

just a self-confirming outcome (that, as we have shown, is not flirt-proof). The process can be

depicted as in Figure 10 except that now m1 flirts with w2 rather than the other way around.

Thus, in this example flirting does not change preferences of the player who is flirted with but

creates pairwise common belief of blocking (by making a player aware that others have different

preferences). □

We are interested in outcomes that are stable w.r.t. flirting, or as we alluded to already in

the examples, are “flirt-proof stable”. To define the refined stability notion, we need to model

communication that raises awareness of potential blocking partners. This changes (point-)beliefs

from one space to a richer space and thus consists of a transition to another state. We model

this with an another finite state machine. In contrast to the transition function τ defined

earlier, the transition due to communication will be part of the solution concept rather than

the primitives of the dynamic matching game with unawareness. To this end, we require some

notation. For any man m ∈ M , define

Hm(ω, µ,w) := {ω′ ∈ Stm(ω) : ω
′ ∈ CKm,w([m ≻w µ(w)] ∩ [w ≻m µ(m)]), Stw(ω′) ⊵ Stw(tm(ω))}

as the set of hypothetical states considered by m at state ω in matching µ such that if m would

suitably raise w’s awareness, then there would be common belief in blocking among w and m.

Likewise, for any w ∈ W , define Hw(ω, µ,m).

Next, for any man m ∈ M , define

Sm(ω, µ,w) :=
∨

ω′∈Hm(ω,µ,w)

Stw(ω′)

as the awareness that is raised by m to w at state ω in matching µ. Likewise, for any w ∈ W ,

define Sw(ω, µ,m). Note that we assume that if there are alternative ways to raise awareness

in order to obtain common belief in blocking, then the highest awareness is communicated.

Note further there is no issue with lying in order to obtain a better match. Players just raise

awareness without necessarily asserting information like “Have you considered that kids born

to parents of different ancestry are less likely to have sickle cell disease?”9 Since we focus on

unawareness but perfect information, a receiver of such message has perfect information about

an issue the moment (s)he becomes aware of the issue.

Define the communication function f : Ω ×M −→ Ω by for any ω ∈ Ω, µ ∈ M, f(ω, µ) is

9Sickle cell disease is an autosomal recessive disorder, for which a child must inherit two copies of the sickle
cell gene, one from each parent, in order to have the disease. People of African, Hispanic, or Middle Eastern
descent have a higher probability of having the trait.
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such that for any w ∈ W , Stw(f(ω,µ)) = Stw(ω)

∨
m∈M Sm(ω, µ,w) and m ∈ M , Stm(f(ω,µ)) =

Stm(ω)

∨
w∈M Sw(ω, µ,m). By Assumption 2, such a state f(ω, µ) exists.

After communication that potentially raises awareness of players and consequently change

preferences, players may now want to communicate further. For any (ω, µ) define recursively,

f1(ω, µ) = f(ω, µ), and for n > 1, fn(ω, µ) = f(fn−1(ω, µ), µ) for any ω ∈ Ω and µ ∈ M. That

is, fn(ω, µ) captures n rounds of communication starting from state ω and matching µ. Since

the model is finite and awareness can never decrease via communication, we observe:

Lemma 2 For any ω ∈ Ω and µ ∈ M, there exist a unique absorbing state for f denoted by

f∞(ω, µ).

In the absorbing state of the communication function, further communication does not

change awareness of any player.

Definition 5 (Flirt-proof stability) We say that matching µ is flirt-proof stable at ω if ω =

f∞(ω, µ) and it is stable at ω.

A flirt-proof stable matching is absorbing w.r.t. f but not necessarily w.r.t. τ . Adding

latter, yields:

Definition 6 (Flirt-proof self-confirming outcome) We say that an outcome (ω, µ) is flirt-

proof self-confirming if

(i) µ is flirt-proof stable at ω, and

(ii) ω is absorbing (w.r.t. τ) given µ.

Proposition 5 Every finite dynamic two-sided matching game has a flirt-proof self-confirming

outcome.

The proof is analogous to the proof of existence of a self-confirming outcome (Proposition 3)

and thus omitted.

For a fixed small ε ∈ (0, 1), define a matching and flirting process by transition probabilities
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Qε such that for any ω and µ,

Qε(µ′, ω′ | µ, ω) :=



1−ε

|M̂B(f∞(ω,µ),µ)|
if µ′ differs from µ by satisfaction of exactly one

pair in M̂B(f∞(ω, µ), µ) and τ(f∞(ω, µ), µ′) = ω′;

ε
|B(f∞(ω,µ),µ)| if µ′ differs from µ by satisfaction of exactly one

pair in B(f∞(ω, µ), µ) and τ(f∞(ω, µ), µ′) = ω′;

1 if µ′ = µ and µ is flirt-proof stable given ω and

τ(f∞(ω, µ), µ′) = ω′;

0 else.

Naturally, the process would proceed as follows: Given a current state ω and aware-

ness/preferences at ω, the current matching µ, some players may have incentives to raise

awareness of others, and the state evolves through communication to f(ω, µ) and further until

communication quiets down and reaches state f∞(ω, µ). Now there may be some blocking pairs

w.r.t. preferences at f∞(ω, µ). Satisfying some blocking pair, with (1 − ε)-priority given to a

mutually optimal blocking pair, would lead to another matching µ′. At this matching µ′ and

state f∞(ω, µ), there may be discoveries leading to another state τ(f∞(ω, µ), µ′) = ω′. At this

state and corresponding awareness/preferences, some players may have an urge to communicate

and raise other players’ awareness. This goes on until communication quiets down again and

there might be now some pairwise common belief of blocking. Satisfying such a blocking pair,

with (1−ε)-priority given to a mutual optimal best blocking pair, may lead to yet another match

µ′′ ... We let states transit after the transition of the matching, modeling transition through

transformative experiences in the matching. We also let states transit before the transition of

the matching, modeling transition through communication. Above formal description of the

process involves a simultaneous transition of states and matches. It can be thought of just

describing the process at every “even” period. In a sense, the implicit “odd” period consists of

multiple rounds of communication between players and the transition of the matching and the

implicit “even” period consists of the transformative experiences.

Lemma 3 An outcome (µ, ω) is flirt-proof self-confirming if and only if it is an absorbing

outcome of Qε.

Proof. ⇐: Let (µ, ω) be an absorbing outcome of Qε. Then Qε(µ, ω | µ, ω) = 1. By the

construction of Qε, (µ, ω) is flirt-proof self-confirming.

⇒: Let (µ, ω) be flirt-proof self-confirming. Then µ is flirt-proof stable at ω, and ω is

absorbing given µ. Hence, Qε(µ, ω | µ, ω) = 1, i.e., (µ, ω) be an absorbing outcome of Qε. □

30



Proposition 6 For any (initial) outcome (µ, ω) and ε ∈ (0, 1), the matching and flirting pro-

cess Qε convergences to a flirt-proof self-confirming outcome almost surely.

Proof. First, we argue that each absorbing set of Qε cannot involve more than one state

(denoted with ω∗). Suppose by contradiction that there exists an absorbing set of Qε that

involves two different states. Denote them by ω∗ and ω∗∗ with ω∗ ̸= ω∗∗. By the defini-

tion of absorbing set, each outcome (consisting both of a state and a matching) is reach-

able from any other outcomes in the absorbing set via a finite number of transitions. Thus,

ω∗ must be reachable from ω∗∗ and vice versa. That is, τ(...τ(f∞(ω∗, ·), ·)..., ·) = ω∗∗ and

τ(...τ(f∞(ω∗∗, ·), ·)..., ·) = ω∗. Since for each agent i, awareness can only increase along the

process, we must have Sti(ω∗) = Sti(ω∗∗) for all i. The assumption of no redundancies, Assump-

tion 1, implies now that ω∗ = ω∗∗, a contradiction.

The rest of the proof is analogous to the proof of Proposition 4. □

Recall that (µ, ω) is self-confirming if (i) µ is stable at ω, and (ii) ω is absorbing given µ, i.e.,

τ(ω) = ω. Meanwhile, (µ, ω) is flirt-proof self-confirming if (i) matching µ is stable at ω, (iii)

ω = f∞(ω, µ), and (iv) τ(ω) = ω absorbing given µ. Since (i)-(iii) implies (i)-(ii), flirt-proof

self-confirming implies self-confirming. Thus, we conclude:

Proposition 7 If an outcome (µ, ω) is flirt-proof self-confirming, then it is also a self-confirming

outcome.

Examples 6 and 7 show that the converse does not hold.

6 Does Divorce Improve Welfare?

Will divorcers, who experienced preference changes, necessarily become better off? More pre-

cisely, suppose a player is enlightened during a matching, changes his/her preferences, and

consequently divorces his/her current match. Will such a player become necessarily better off

in the resulting rematching process where the player’s welfare is evaluated using his/her new

preferences? Similarly, will the divorcee, i.e., the player who is divorced by the divorcer, nec-

essarily become worse off? We show by example that this is not the case. In terms of welfare

of the divorcer and the divorcee, anything goes even within the same matching game and the

same initial condition.

Example 8 Suppose there are five men M = {m1,m2,m3,m4,m5} and five women W =
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{w1, w2, w3, w4, w5}. Consider the following strict preferences given by the rank order lists:

≻m1 : w1, w2, w4, w3, w5

≻m2 : w2, w3, w4, w1, w5

≻m3 : w1, w3, w2, w4, w5

≻m4 : w4, w5, w3, w2, w1

≻m5 : w5, w1, w3, w2, w4

≻w1 : m5,m1,m3,m4,m2

≻w2 : m3,m1,m2,m5,m4

≻w3 : m2,m3,m1,m4,m5

≻w4 : m1,m2,m4,m3,m5

≻w5 : m4,m5,m1,m2,m3

and the initial stable matching µ1 =

(
m1 m2 m3 m4 m5

w1 w2 w3 w4 w5

)
.

Figure 12: Processes in Example 8
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Suppose m1 is enlightened and changes his preference such that his new rank order list is

w2, w1, w4, w3, w5. For simplicity, suppose that this is the only change in the players’ preferences

along the entire process and that all players have correct beliefs about every other agents’

preferences. With m1’s new preference, he blocks with w2. We show that if m1 rematches to

w2, the process of satisfying mutually optimal blocking pairs may lead to any of the three stable

matchings, depending on which mutually optimal blocking pair is satisfied at stages 7 or 8 (see

Figure 12). Furthermore, in these stable matchings, m1 can be matched to w2 (in µ10A), w1 (in

µ11B ), or w4 (in µ9), which means that he may be better off, same, or worse off.

Now observe woman w1. She is the partner that gets initially divorced by the divorcer m1.

After the rematching process, she may be matched to m5 (in µ9, her most preferred counterpart,

making her strictly better off compared to the initial matching. She may also be matched to

m3 (in µ10A), making her worse off compared to her initial match. Finally, she may also be

matched to m1 again (in µ11B), her initial match, resulting in no change of welfare for her.

Thus, the example demonstrates that for both the divorcer and divorced may be better, worse,

or equal as well off as in the initial matching, even within the same matching game and from

the same initial condition. □

7 Discussion

7.1 Infidelity

Neither in self-confirming outcomes nor flirt-proof self-confirming outcomes, players are guar-

anteed to become fully aware. The reason is that stability given the state prevents them from

making transformative experiences and absorbing states does not allow for further changes of

preferences in their stable matching. This has been illustrated in prior Example 5. One extra

source of experiences is experimentation. In the marriage market it may be dubbed “infidelity”.

Consider again Example 5. Suppose that in the self-confirming outcome (µ0, ω1) both man m1

and w2 temporary match despite µ0 being stable given ω1. (Recall that in matching µ0 given by

the first matching in Figure 13, man m1 is matched to woman w1 and woman w2 is matched to

manm2.) Then manm1 and w2 would become aware that they are each others’ first choice. The

state would transit to ω2. Consequently, m1 and w2 form a blocking pair and since this is also

common belief among m1 and w2, the original matching µ0 would be destabilized. Divorcing

the players and satisfying the blocking pair yields matching µ1 at state ω2; see Figure 13. This

may be dubbed the “direct” effect of infidelity. Yet, there is also an indirect effect. Matching

µ1 is not stable given ω2 because both man m2 and woman w1 are unmatched and now form

a blocking pair and this is common belief. Consequently, satisfying this blocking pair yields

matching µ2; see Figure 13 for the resulting sequence of matchings. In matching µ2, both man

m2 and woman w2 would become also aware that they are each others’ first choice. This is

the “indirect” effect of infidelity of m1 and w2 on m2 and w2. Contrary to the typical view
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of infidelity, it is a positive external effect in this case. (Obviously, this is not generally the

case.) We reach a self-confirming outcome (µ2, ω2), in which all parties are fully aware. In this

example, infidelity allows all to escape the unawareness trap by marriage.

Figure 13: Infidelity in Example 5

7.2 Stable Confusion About Others

Consider again Example 7. In outcome (µ2, ω2), man m1 is matched to woman w2 and man m2

is matched to woman w1. While it is pairwise common belief among m1 and w2 that they prefer

each other over the other counterpart, it is not common belief among all players. In particular,

since at state ω2 the point-belief of both man m1 and woman w2 is ω0 (see Figure 11), they

do not understand why m1 and w2 formed a blocking pair and why the matching changed

from µ0 to µ2. In other words, they are confused about m1 and w2. Note also that players

m1 and w2 can not gain anything from enlightening players m2 and w2. So there is no force,

either by communication or blocking actions, to change the situation. The outcome is flirt-proof

self-confirming. It emphasizes the fact that a matching can be stable given beliefs and beliefs

can be stable given the matching despite some players being confused. The confusion itself is

“stable” because there is nothing they can do about within the game. We believe that this is

often quite realistic in matching markets. It is also not surprising from a theoretical point of

view because solution concepts to coalitional games like stability or the core are not concepts

akin to rationalizability in non-cooperative game theory.

While self-confirming outcomes do not rationalize the confusion, we may wonder about the

possible state of mind of players who are confused. There are two possible ways to rationalize

such confusion. The first is that others make mistakes: They should block but mistakenly do

not do so. The second explanation keeps the assumption that others are rational but explains

the confusion with awareness of unawareness: When a player expects others to block but such

blocking does not happen, the player may suspect that (e)he her/himself is unaware of some-

thing that some others are aware. That is, the player may become aware that (s)he is unaware

of something. While our model can be extended to model awareness of unawareness explicitly

using the tools presented in Schipper (2024), it would not change any of our conclusions unless

players can do something about discovering what they might miss. This would require enriching

the problem with additional structure such as infidelity as discussed above or individual actions

of engaging in gossiping, asking for counseling, etc.
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7.3 Related Literature

Our work is related to five strands of literature. The first strand is the literature on matching

with incomplete information. There are several papers on matching with incomplete information

under the non-transferable utility (NTU) framework. Under two-sided uncertainty, Lazarova

and Dimitrov (2017) study stability where a pair of agents blocks if each of the agents believe

that he/she can do better with positive probability. This is a very demanding notion of stability

as a stable matching must be robust to beliefs that put a tiny probability on agents do better.

Our notion of stability, in contrast, is absence of pairwise common (point-)belief in blocking.

In order to block a pair must agree to block, i.e., it must be common belief among them that

both prefer each other over their current partners. Under one-sided uncertainty where the

workers’ types distribution and the firms’ types are common knowledge, Bikhchandani (2017)

investigates two notions of stability: Ex ante stability where agents block if they are better off

with all admissible types and Bayesian stability where agents block if they have higher expected

utilities. Ex ante stability implies that participation in a block makes it common certainty that

each is better off in a block. The notion of ex ante stability is adapted from a notion of stability

introduced for transferable utility (TU) matching games with one-sided incomplete information

by Liu et al. (2014). Pomatto (2022) provides an epistemic non-cooperative counterpart to Liu

et al. (2014). Chen and Hu (2020) construct a learning process leading to an extension of the

notion of stability by Liu et al. (2014). This learning process, similar to our matching process,

also involves satisfying blocking pairs.10 Alston (2020) shows that belief restrictions imposed on

top of the stability notion by Liu et al. (2014) may lead to non-existence (see also Bikhchandani,

2017). Liu (2020) offers a stability notion for TU matching games with one-sided incomplete

information that is explicit about the on-path and off-path beliefs. The stability notion closest

to ours in the literature on TU matching with incomplete information is Forges (2004), who

studies the extension of the incentive compatible coarse core of Vohra (1999) to assignment

games. There is also the literature on centralized matching with incomplete information from

a mechanism design perspective; see for instance Roth (1989), Majumdar (2003), Ehlers and

Massó (2007), Yenmez (2013), and Fernandez, Rudov, and Yariv (2022).

The second strand is the literature on decentralized matching. Roth and Vande Vate (1990)

showed that from any matching, there exists a sequence of matching by satisfying blocking pairs

that leads to a stable matching. Ackermann et al. (2008) showed that from any matching,

there exists a sequence of matching by satisfying optimal blocking pairs that leads to a stable

matching. As corollaries, the process of satisfying random (optimal) blocking pairs leads to

a stable matching with probability one.11 These results are partly driving our decentralized

10However, there are three important distinctions. First, we have different blocking notions: their agents block
if it is beneficial in the worst-case realization of payoff types, while our agents block if there is common belief in
blocking given their awareness levels. Second, they put positive probabilities on all blocking pairs while we only
put positive probabilities on best blocking pairs. Third, along the rematching process, their agents update their
beliefs about other agents’ types, while our agents also update their awareness level.

11Applications of Roth and Vande Vate (1990) on random paths to stability include decentralized market
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matching process to converge to a self-confirming outcome: As we perturb the process that

prioritizes mutually optimal blocking pairs with ε probability to select an optimal but not

necessarily mutually optimal blocking pair even when a mutually blocking pair exists, we always

have positive probability over all optimal blocking pairs. This is very different from Klaus,

Klijn, and Walzl (2010) who perturb their process with ε probability to match a non-blocking

pair together. Another difference between our random path to self-confirming outcomes and

random path to stability in the literature is that our notion of blocking differs slightly since

we require pairwise common (point-)belief in blocking. An insightful paper on random path to

stability is Rudov (2024), who shows that under some conditions, any unstable matching can

reach any stable matching through the process of satisfying random (optimal) blocking pairs. As

mentioned already in Section 2.2, he also observed using a five-by-five market that a process that

satisfies only mutual optimal blocking pairs whenever the exist may fail to converge to a stable

matching. From non-cooperative or search perspectives, Lauermann and Nöldeke (2014), Wu

(2015), and Ferdowsian, Niederle, and Yariv (2025) show that decentralized interactions only

lead to stable outcomes when there is a unique stable matching or when preferences are highly

correlated. In this context note that our observation in Section 2 that without restrictions on

the marriage market structure, prioritizing mutually optimal blocking pairs can lead to cycles,

is consistent with these findings. Adachi (2003) shows that equilibrium outcomes converge to

stable matchings as search frictions vanish. Search frictions in Adachi (2003) are represented by

a time discounting while we interpret frictions is any factor that favors a non-mutual optimal

blocking pair over a mutually optimal blocking pair. In contrast to Adachi (2023), we show that

frictions can be arbitrary small but should not vanish for convergence to a stable matching.

Doval (2022) investigates a notion of dynamic stability when matching opportunities arrive

over time and matching is irreversible. In an interesting paper combining both incomplete

information and decentralized non-cooperative matching in a labor market context, Ferdowsian

(2024) allows workers to learn about their liking of a firm via getting matched to the firm.

Matchings are broken after each period and learning is immediate upon a match. Besides the

different framework and setting, a main difference to our paper is that all learning is anticipated.

The third strand is the literature on the core. When modeling a matching problem under

complete information, the core of the marriage market is the set of stable matchings (Roth

and Sotomayor, 1990, Sasaki and Toda, 1992). For exchange economies with asymmetric in-

formation, Wilson (1978) introduced the notions of the coarse core and the fine core, which

involves no information sharing or maximal information sharing respectively. Since both the

core allocations and counterfactual blocking may be informative, these core concepts have been

further refined (e.g., Vohra, 1999, Forges, 2004, Ray and Vohra, 2015). For surveys of the core

processes for stable job matching with competitive salaries (Chen, Fujishige, and Yang, 2011) and paths to
stability under incomplete information (Lazarova and Dimitrov, 2017, for under NTU matching games and Chen
and Hu, 2020, for TU matching games). It has also been extended to more general contexts such as matching
with couples (Klaus and Klijn, 2007), many-to-many matching (Kojima and Ünver, 2008), and many-to-many
matching with contracts (Millán and Pepa Risma, 2018).
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under incomplete information, see Forges, Minelli, and Vohra (2002) and Forges and Serrano

(2013). The coarse core has been extended to coalitional games with unawareness by Bryan,

Ryall, and Schipper (2022). Our notion of stability is inspired by the coarse core. Our notion

of flirt-proof stability is inspired by refinements of the coarse core that feature intentional com-

munication. In some sense, flirt-proof stability combines the idea of the coarse core and with

the idea of non-cooperative disclosure games (e.g., Milgrom and Roberts, 1986) but keeps the

spirit of cooperative game theory.

The fourth strand is the literature on communication and disclosure in matching games

with incomplete information. While Hoppe, Moldovanu, and Sela (2009) and Coles, Kush-

nier, and Niederle (2013) study costly signaling in matching games, Ostrowsky and Schwarz

(2010), Bilancini and Bonicelli (2013), and Chade and Pram (2024) study (costly) disclosure

of information in matching games. All these papers make use of ideas from non-cooperative

game theory for equilibria under communication while arguably we model raising awareness

via flirting in the spirit of cooperative game theory. Moreover, none of these papers consider

raising awareness.

The final strand is the literature on unawareness. Since this is the first paper on matching

under unawareness, we contribute to the recent growing literature on exploring the implications

of unawareness in economics. Other applications of unawareness pertain to disclosure, moral

hazard, contract theory, screening, efficient mechanism design, auctions, procurement, dele-

gation, speculation, financial market microstructure, default in general equilibrium, electoral

campaigning, business strategy, and conflict resolution; for a bibliography, see Schipper (2025).
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