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1 Introduction

Unawareness refers to the lack of conception rather than to the lack of information.

It is natural to presume that asymmetric unawareness may lead to speculative trade.

Indeed, Heifetz, Meier, and Schipper (2013) present a simple example of speculation under

unawareness in which there is common certainty of willingness to trade but agents have a

strict preference to trade despite the existence of a common prior.1 This is impossible in

standard state-space structures with a common prior. In standard “no-speculative-trade”

theorems, if there is common certainty of willingness to trade, then agents are necessarily

indifferent to trade (Milgrom and Stokey, 1982). Somewhat surprisingly, Heifetz, Meier,

and Schipper (2013) also prove a “no-speculative-trade” result according to which under

a common prior there cannot be common certainty of strict preference to trade. This

means that arbitrarily small transaction costs rule out speculation under asymmetric

unawareness. The “no-speculative-trade” result in Heifetz, Meier, and Schipper (2013)

was stated for finite unawareness belief structures. In this note we generalize the result

to infinite unawareness belief structures. Such a generalization is relevant since the space

of underlying uncertainties may be large. Especially if it is large, agents may be unaware

of some of them. Moreover, the generalization serves as a robustness check for our “no-

speculative-trade” result for finite unawareness belief structures. It shows that the result

in Heifetz, Meier, and Schipper (2013) is not an artefact of the finiteness assumption but

holds more generally. The topological unawareness belief structure introduced in this

paper to prove our result may be of independent interest for other applications.

Board and Chung (2011) present a different model of unawareness, in which unaware-

ness is about “objects” rather than events. Intuitively, we model an agent’s unawareness

of events like “penicillium rubens has antibiotic properties” while in their model the

agent’s corresponding unawareness would be about “penicillium rubens”. Board and

Chung (2011) also prove a “no-speculative-trade” result for finite spaces. This suggests

that the “no-speculative-trade” result in Heifetz, Meier, and Schipper (2013) remains

robust if unawareness of events is replaced by unawareness of objects. Further, Board

and Chung (2011) study awareness of unawareness of objects. This allows them to show

that the “no-speculative-trade” result obtains both under “living in denial” and “living

under paranoia”, where former refers to the situation in which every agent is certain

that there is nothing they are unaware of while latter refer to the situation in which

every agent is certain that there is something they are unaware of. Grant and Quiggin

1This example is a probabilistic version of the speculation example in Heifetz, Meier, and Schipper

(2006).
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(2013) discuss the speculative trade example of Heifetz, Meier, and Schipper (2006) in

the context of awareness of unawareness. The authors argue that agents should induce

from previous experiences of becoming aware and from differences in awareness across

agents that they themselves could be unaware of something. This awareness of unaware-

ness may be coupled with a version of a precautionary principle which may make them

reluctant to engage in speculative trade.

The paper is organized as follows. The next section introduces topological unaware-

ness belief structures. The general “no-speculative-trade” theorem is stated in Section 3.

Finally, Section 4 contains the proof of the theorem.

2 Topological Unawareness Belief Structures

We consider an unawareness belief structure as defined in Heifetz, Meier, and Schipper

(2013) but with additional topological properties.

2.1 Compact Hausdorff State-Spaces

Let S = {S} be a complete lattice of disjoint state-spaces, with respect to the partial

order � on S. If S ′ and S ′′ are such that S ′′ � S ′ we say that S ′′ is more expressive than

S ′. (S,�) is well-founded, that is, every non-empty subset X ⊆ S contains a �-minimal

element. That is, there is a S ′ ∈ X such that for all S ∈ X : if S � S ′, then S = S ′.

Each state-space S ∈ S is a non-empty compact Hausdorff space with a Borel σ-field FS.

Denote by Ω =
⋃
S′∈S S

′ the union of these spaces. Ω is endowed with the disjoint-union

topology: O ⊆ Ω is open if and only if O ∩ S is open in S for all S ∈ S.

As we will see later, the lattice of spaces is useful to model unawareness with multiple

agents. If an agent forms beliefs about events of a space with low expressive power and

not about some events of a space with higher expressive power, then she is unaware of

latter events. In a multi-agent context, agents should also form beliefs about other agent’s

awareness. In particular, at some events that agent i forms beliefs over, agent j may form

beliefs about events in a space with lower expressive power. It means that i thinks that j

is unaware of some aspects of the reality. Interactive unawareness is captured by forming

beliefs about beliefs etc. down the lattice. We will make this precise once we introduce

agents’ type mappings in Subsection 2.8.
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2.2 Continuous Projections

For every S and S ′ such that S ′ � S, there is a continuous surjective projection rS
′

S :

S ′ → S, where rSS is the identity. Note that the cardinality of S is smaller than or equal

to the cardinality of S ′. We require the projections to commute: if S ′′ � S ′ � S then

rS
′′

S = rS
′

S ◦ rS
′′

S′ . If ω ∈ S ′, denote ωS = rS
′

S (ω). If D ⊆ S ′, denote DS = {ωS : ω ∈ D}.

2.3 Events

For D ⊆ S, denote D↑ =
⋃
S′∈S:S′�S

(
rS
′

S

)−1
(D). An event is a pair (E, S), where E = D↑

with D ⊆ S, where S ∈ S. D is called the base and S the base-space of (E, S), denoted

by S(E). If E 6= ∅, then S is uniquely determined by E and, abusing notation, we write

E for (E, S). Otherwise, we write ∅S for (∅, S). Note that not every subset of Ω is an

event.

Let Σ be the set of measurable events of Ω, i.e., D↑ such that D ∈ FS, for some

state-space S ∈ S. Note that unless S is a singleton, Σ is not an algebra because it

contains distinct ∅S for all S ∈ S.

2.4 Negation

If (D↑, S) is an event where D ⊆ S, the negation ¬(D↑, S) of (D↑, S) is defined by

¬(D↑, S) := ((S \D)↑, S). Note, that by this definition, the negation of a (measurable)

event is a (measurable) event. Abusing notation, we write ¬D↑ := (S \D)↑. Note that

by our notational convention, we have ¬S↑ = ∅S and ¬∅S = S↑, for each space S ∈ S.

¬D↑ is typically a proper subset of the complement Ω \D↑ . That is, (S \D)↑ $ Ω \D↑ .

Intuitively, there may be states in which the description of an event D↑ is both

expressible and valid – these are the states in D↑; there may be states in which its

description is expressible but invalid – these are the states in ¬D↑; and there may be

states in which neither its description nor its negation are expressible. The definition of

negation is crucial for modeling unawareness in our structures. Intuitively, if an agent

considers the negation of an event E, then she does not necessarily considers everything

but E. Rather, she considers everything but E given her awareness level as defined by

the space on which her beliefs are defined on.
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2.5 Conjunction and Disjunction

If
{(
D↑λ, Sλ

)}
λ∈L

is a finite or countable collection of events (with Dλ ⊆ Sλ, for λ ∈ L),

their conjunction
∧
λ∈L

(
D↑λ, Sλ

)
is defined by

∧
λ∈L

(
D↑λ, Sλ

)
:=
((⋂

λ∈LD
↑
λ

)
, supλ∈L Sλ

)
.

Note, that since S is a complete lattice, supλ∈L Sλ exists. If S = supλ∈L Sλ, then

we have
(⋂

λ∈LD
↑
λ

)
=
(⋂

λ∈L

((
rSSλ
)−1

(Dλ)
))↑

. Again, abusing notation, we write∧
λ∈LD

↑
λ :=

⋂
λ∈LD

↑
λ (we will therefore use the conjunction symbol ∧ and the intersec-

tion symbol ∩ interchangeably).

We define the relation ⊆ between events (E, S) and (F, S ′) , by (E, S) ⊆ (F, S ′) if

and only if E ⊆ F as sets and S ′ � S. If E 6= ∅, we have that (E, S) ⊆ (F, S ′) if and

only if E ⊆ F as sets. Note however that for E = ∅S we have (E, S) ⊆ (F, S ′) if and

only if S ′ � S. Hence we can write E ⊆ F instead of (E, S) ⊆ (F, S ′) as long as we keep

in mind that in the case of E = ∅S we have ∅S ⊆ F if and only if S � S(F ). It follows

from these definitions that for events E and F , E ⊆ F is equivalent to ¬F ⊆ ¬E only

when E and F have the same base, i.e., S(E) = S(F ).

The disjunction of
{
D↑λ

}
λ∈L

is defined by the de Morgan law
∨
λ∈LD

↑
λ := ¬

(∧
λ∈L ¬

(
D↑λ

))
.

Typically
∨
λ∈LD

↑
λ $

⋃
λ∈LD

↑
λ, and if all Dλ are nonempty we have that

∨
λ∈LD

↑
λ =⋃

λ∈LD
↑
λ holds if and only if all the D↑λ have the same base-space. Note, that by these

definitions, the conjunction and disjunction of (at most countably many measurable)

events is a (measurable) event.

Apart from the topological conditions and the well-foundedness assumption, the

event-structure outlined so far is analogous to Heifetz, Meier, and Schipper (2006, 2008,

2013).

2.6 Regular Borel Probability Measures

Here and in what follows, the term ’events’ always means measurable events in Σ unless

otherwise stated.

For each S ∈ S, ∆ (S) is the set of regular Borel probability measures on (S,FS).

We consider this set itself as a measurable space which is endowed with the topology of

weak convergence.2

2The topology of weak convergence is generated by the sub-basis of sets {µ ∈ ∆(S) : µ(O) > r}
where O ⊆ S is open and r ∈ R (see e.g. Billingsley (1968), appendix III). This topology coincides with

the weak∗ topology when S is normal (and in particular compact and/or metric); the weakest topology
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⋃
S∈S ∆(S) is endowed with the disjoint-union topology: O∆ ⊆

⋃
S∈S ∆(S) is open if

and only if O∆ ∩∆(S) is open in ∆(S) for all S ∈ S.

Note that although each S and each ∆(S) are compact, if S is infinite, Ω and⋃
S∈S ∆(S) are not compact.

2.7 Marginals

For a probability measure µ ∈ ∆ (S ′), the marginal µ|S of µ on S � S ′ is defined by

µ|S (D) := µ

((
rS
′

S

)−1

(D)

)
, D ∈ FS.

Let Sµ be the space on which µ is a probability measure. Whenever Sµ � S(E) then

we abuse notation slightly and write

µ (E) = µ (E ∩ Sµ) .

If S(E) � Sµ, then we say that µ(E) is undefined.

2.8 Continuous Type Mappings

Let I be a nonempty finite or countable set of individuals. For every individual, each

state gives rise to a probabilistic belief over states in some space.

Definition 1 For each individual i ∈ I there is a continuous type mapping ti : Ω −→⋃
S∈S ∆ (S). We require the type mapping ti to satisfy the following properties:3

(0) Confinement: If ω ∈ S ′ then ti(ω) ∈ 4 (S) for some S � S ′.

(1) If S ′′ � S ′ � S, ω ∈ S ′′, and ti(ω) ∈ 4(S) then ti(ωS′) = ti(ω).

(2) If S ′′ � S ′ � S, ω ∈ S ′′, and ti(ω) ∈ 4(S ′) then ti(ωS) = ti(ω)|S.

for which the mapping

µ −→
∫
S

fdµ

is continuous for every continuous real-valued function f on S (see Heifetz, 2006, Fn. 3).

3As is shown in Heifetz, Meier, and Schipper (2013), Property (1) of the type mappings is implied

by the Properties (0),(2), and (3).
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(3) If S ′′ � S ′ � S, ω ∈ S ′′, and ti(ωS′) ∈ 4(S) then Sti(ω) � S.

ti(ω) represents individual i’s belief at state ω. Properties (0) to (3) guarantee the

consistent fit of beliefs and awareness at different state-spaces. Confinement means that

at any given state ω ∈ Ω an individual’s belief is concentrated on states that are all

described with the same “vocabulary” - the “vocabulary” available to the individual at

ω. This “vocabulary” may be less expressive than the “vocabulary” used to describe

statements in the state ω.” Properties (1) to (3) compare the types of an individual in a

state ω ∈ S ′ and its projection to ωS, for some S � S ′. Property (1) and (2) mean that

at the projected state ωS the individual believes everything she believes at ω given that

she is aware of it at ωS. Property (3) means that at ω an individual cannot be unaware

of an event that she is aware of at the projected state ωS′ .

Define4

Beni (ω) :=
{
ω′ ∈ Ω : ti(ω

′)|Sti(ω) = ti(ω)
}
.

This is the set of states at which individual i’s type or the marginal thereof coincides

with her type at ω. Such sets are events in our structure:

Remark 1 For any ω ∈ Ω, Beni(ω) is a Sti(ω)-based event, which is not necessarily

measurable.5

Assumption 1 If Beni(ω) ⊆ E, for a measurable event E, then ti(ω)(E) = 1.

This assumption implies introspection (Property (va) in Proposition 4 in Heifetz,

Meier, and Schipper, 2013). Note, that if Beni(ω) is measurable, then Assumption 1

implies ti(ω)(Beni(ω)) = 1.

Definition 2 We denote by Ω :=
〈
S,
(
rS
′′

S′

)
S′′�S′ , (ti)i∈I

〉
a topological unawareness be-

lief structure.

Topological unawareness belief structures are analogous to unawareness belief struc-

tures in Heifetz, Meier, and Schipper (2013) except for the additional topological prop-

erties and the well-foundedness asumption. See Heifetz, Meier, and Schipper (2013) for

further details and interpretations.

4The name “Ben” is chosen analogously to the “ken” in knowledge structures.

5Even in a standard type-space, if the σ-algebra is not countably generated, then the set of states

where a player is of a certain type might not be measurable.
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2.9 Belief, Common Certainty, and Awareness

For i ∈ I, p ∈ [0, 1] and an event E, the p -belief operator is defined by

Bp
i (E) := {ω ∈ Ω : ti(ω)(E) ≥ p},

if there is a state ω such that ti(ω)(E) ≥ p, and by

Bp
i (E) := ∅S(E)

otherwise. The mutual p-belief operator on events is defined by

Bp(E) =
⋂
i∈I

Bp
i (E).

The common certainty operator on events is defined by

CB1 (E) =
∞⋂
n=1

(
B1
)n

(E).

These are standard definitions (e.g. see Monderer and Samet, 1989) adapted to our

unawareness structures.

As in Heifetz, Meier, and Schipper (2013) we define for every i ∈ I the awareness

operator

Ai (E) := {ω ∈ Ω : ti (ω) ∈ ∆ (S) for some S � S (E)} ,

for every event E, if there is a state ω such that ti(ω) ∈ ∆(S) with S � S(E), and by

Ai(E) := ∅S(E)

otherwise.

In Heifetz, Meier, and Schipper (2013, Proposition 1 and 2) we show that Ai(E),

Bp
i (E), Bp(E), and CB1(E) are all S(E)-based measurable events. We also show in

Heifetz, Meier, and Schipper (2013, Proposition 4) that standard properties of belief

obtain. Moreover, in Heifetz, Meier, and Schipper (2013, Proposition 5) we show “stan-

dard” properties of awareness. One of those properties is weak necessitation, i.e., for any

event E ∈ Σ, Ai(E) = B1
i (S(E)↑). This property will be used later in the proof.

Definition 3 An event E is evident if for each i ∈ I, E ⊆ B1
i (E).

Proposition 1 For every event F ∈ Σ:
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(i) CB1(F ) is evident, that is CB1(F ) ⊆ B1
i (CB

1(F )) for all i ∈ I.

(ii) There exists an evident event E such that ω ∈ E and E ⊆ B1
i (F ) for all i ∈ I, if

and only if ω ∈ CB1(F ).

The proof is analogous to Proposition 3 in Monderer and Samet (1989) for a standard

state-space and thus omitted.

3 A Generalized “No-speculative-trade” Theorem

Definition 4 (Prior) A prior for player i is a system of probability measures Pi =(
P S
i

)
S∈S ∈

∏
S∈S ∆(S) such that

1. The system is projective: If S ′ � S then the marginal of P S
i on S ′ is P S′

i . (That

is, if E ∈ Σ is an event whose base-space S (E) is lower or equal to S ′, then

P S
i (E) = P S′

i (E).)

2. Each probability measure P S
i is a mixture of i’s beliefs in S: for every event E ∈ Σ

such that S(E) � S,

P S
i (E ∩ S ∩ Ai (E)) =

∫
S∩Ai(E)

ti (·) (E) dP S
i (·) . (1)

We call any probability measure µi ∈ ∆(S) satisfying equation (1) in place of P S
i a

prior of player i on S.

Roughly the probability assigned by agent i’s prior to the event E ∩ Ai(E) is the

mixture of agent i’s beliefs ti (ω) (E) over states ω in which i is aware of E weighted

by the prior. This is analogous to the definition of prior in standard belief structures

(see Samet, 1999). See Heifetz, Meier, and Schipper (2013) for further discussions and

examples.

Definition 5 (Common Prior) P =
(
P S
)
S∈S ∈

∏
S∈S ∆(S) (resp. P S ∈ ∆ (S)) is a

common prior (resp. a common prior on S) if P (resp. P S) is a prior (resp. a prior on

S) for every player i ∈ I.

Denote by [ti(ω)] := {ω′ ∈ Ω : ti(ω
′) = ti(ω)}.

9



Definition 6 A common prior P =
(
P S
)
S∈S ∈

∏
S∈S ∆(S) (resp. a common prior

P S on S) is positive if and only if for all i ∈ I and ω ∈ Ω: if ti (ω) ∈ 4 (S ′), then

P S
(

([ti (ω)] ∩ S ′)↑ ∩ S
)
> 0 for all S � S ′ (resp. for S).

Note that with this positivity assumption, Beni(ω) is measurable for every ω ∈ Ω

and i. Note further that by Lemma 3 below, [ti(ω)] ∩ S ′ ∈ FS′ .

Recall Remark 7 in Heifetz, Meier, and Schipper (2013) according to which if Ŝ is the

upmost state-space in the lattice S, and (P S
i )S∈S ∈

∏
S∈S ∆(S) is a tuple of probability

measures, then (P S
i )S∈S is a prior for player i if and only if P Ŝ

i is a prior for player i on

Ŝ and P S
i is the marginal of P Ŝ

i for every S ∈ S.

Speculative trade between agents could occur at a state if it is common certainty that

agents form different expectations of a random variable (e.g. stock returns).

Definition 7 Let x1 and x2 be real numbers and v a continuous random variable6 on Ω.

Define the sets E≤x11 :=
{
ω ∈ Ω :

∫
St1(ω)

v (·) d (t1 (ω)) (·) ≤ x1

}
and

E≥x22 :=
{
ω ∈ Ω :

∫
St2(ω)

v (·) d (t2 (ω)) (·) ≥ x2

}
. We say that at ω, conditional on his

information, player 1 (resp. player 2) believes that the expectation of v is weakly below

x1 (resp. weakly above x2) if and only if ω ∈ E≤x11 (resp. ω ∈ E≥x21 ).

Since we endowed Ω with the disjoint union topology, we have that a function v :

Ω −→ R is continuous if and only if for each S ∈ S the restriction of v to S is a continuous

function from S to R.

Note that the sets E≤x11 or E≥x21 may not be events in our unawareness belief structure,

because v(ω) 6= v(ωS) is allowed, for ω ∈ S ′ � S. Yet, we can define p-belief, mutual

p-belief, and common certainty for measurable subsets of Ω, and show that the properties

6One may wonder to what extent the assumption of a continuous random variable would preclude

situations in which for instance the “returns from investing in eurozone sovereign debt seems to dependent

discontinuously on the question of whether the eurozone stays intact”. We view continuity more as a

technical assumption. The intuitive notion of continuity referred to in the eurozone example does not

necessarily correspond to the mathematical notion of continuity. To see this, note that since we do

not assume that state-spaces are connected, we allow for a states-space to be a disjoint union of two

open subsets, call them A and B, with A standing for the event that the eurozone stays intact while B

corresponding to the event that the eurozone falls apart. Then a random variable, which restricted to

A is continuous and larger than x while restricted to B being also continuous but smaller than y with

x > y, is a continuous random variable although it depends “discontinuously” (i.e., more precisely it

“jumps”) on the event of whether or not the eurozone stays intact or not.
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stated in Heifetz, Meier, and Schipper (2013, Propositions 4 and 6) obtain as well. The

proofs are analogous and thus omitted.

Theorem 1 Let Ω be a topological unawareness belief structure and P a positive common

prior. Then there is no state ω̃ ∈ Ω, continuous random variable v : Ω −→ R, and

x1, x2 ∈ R with x1 < x2 such that: at ω̃ it is common certainty that conditional on her

information, player 1 believes that the expectation of v is weakly below x1 and, conditional

on his information, player 2 believes that the expectation of v is weakly above x2.

This general “no-speculative-trade” theorem implies our “no-speculative-trade” the-

orem for finite unawareness belief structures (Heifetz, Meier, and Schipper, 2013).

We should clarify how the additional assumptions on the lattice and the state-spaces

allow us to generalize the “no-speculative-trade” theorem for finite unawareness belief

structures in Heifetz, Meier, and Schipper (2013) to the infinite case. One assumption

imposed on topological unawareness structures is that the complete lattice of spaces

is well-founded. That is, we impose that each nonempty subset X ⊆ S of the lattice

contains at least one �-minimal space. If the join is an element of the subset X , then it

is the unique �-minimal space of X . Otherwise well-foundedness implies that there must

be several incomparable �-minimal spaces. The assumption that the lattice of spaces

is well-founded is used in an important step of the proof. If the set of states in which

there is common certainty that the first player’s expectation is strictly above x and the

second player’s expectations is weakly below x is nonempty, we need to find a minimal

state-space such that the common certainty event restricted to this space is nonempty.

Assuming that the lattice of spaces is well-founded allows us to find such a minimal space,

which is key to extending the “no-speculative-trade” theorem to unawareness. Otherwise,

it could be the case that agent 1 may believe that agent 2 is less aware and believes that

agent 1 is even less aware and believes that agent 2 is even less aware and believes ...

The assumption that state-spaces are compact Hausdorff might not be strictly neces-

sary. This is because our assumption of a positive common prior (Definition 6) implies

that for each agent there can be at most a countable number of types. This fact should

facilitate the development of results in a purely measure theoretic setting. Yet, our as-

sumptions make the proofs of Lemmata 1, 2, and 3, and Theorem 1 simpler. Moreover,

the topological unawareness belief structure could be of independent interest. For in-

stance, it might prepare for other versions of the “no-speculative-trade” results, where

the positivity assumption is dropped (and hence any player could have uncountably many

types). Feinberg (2000) and Heifetz (2006) prove results on the absence of common cer-

tainty of speculative-trade in some states without the positivity assumption. We focus
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on the absence of common certainty of speculative-trade in all states. Hence, our notion

of “no-speculative-trade” implies Feinberg’s notion of “no-speculative-trade”. Although

this comes at the cost of the positivity assumption, we opted for our notion because

intuitively one is interested to know whether there are some states (as opposed to all

states) where agents speculate.

On the feasibility of a converse to Theorem 1, we note that Heifetz, Meier, and

Schipper (2013) show by example that the converse of the “no-speculative-trade” theorem

does not hold even in the finite case.

4 Proof of Theorem 1

4.1 Preliminary Definitions and Results

We define G ⊆ Ω to be a measurable set if and only if for all S ∈ S, G ∩ S ∈ FS. The

collection of measurable sets forms a sigma-algebra on Ω.

Let Ω be an unawareness belief structure. As in Heifetz, Meier, and Schipper (2012,

Appendix B), we define the flattened type-space associated with the unawareness belief

structure Ω by

F (Ω) := 〈Ω,F , (tFi )i∈I〉,

where Ω is the union of all state-spaces in the unawareness belief structure Ω, F is the

collection of all measurable sets in Ω, and tFi : Ω −→ ∆(Ω) is defined by

tFi (ω)(E) :=

{
ti(ω)(E ∩ Sti(ω)) if E ∩ Sti(ω) 6= ∅
0 otherwise

The definition of the belief operator as well as standard properties of belief and

Proposition 1 can be extended to measurable subsets of Ω. The proofs are analogous and

thus omitted.

In this article, a standard topological type space (see for instance, Heifetz, 2006) is a

compact Hausdorff space Ω such that for every individual i ∈ I there is a continuous type

mapping ti : Ω −→ ∆(Ω) from Ω to the the space of regular Borel probability measures

∆(Ω) endowed with the topology of weak convergence.

Let Ω be a topological unawareness belief structure and P a positive common prior.

For the proof of the theorem, we have to show that there is no evident measurable set

12



E ∈ F such that ω̃ ∈ E and∫
Ω

v(·)d(t1(ω))(·) ≤ x1 < x2 ≤
∫

Ω

v(·)d(t2(ω))(·)

for all ω ∈ E.

We need the following lemmata:

Lemma 1 Let Ω be a topological unawareness belief structure, v : Ω −→ R be a contin-

uous random variable, and x ∈ R. Then
{
ω ∈ Ω :

∫
Ω
v(·)d(ti(ω))(·) ≥ x

}
and{

ω ∈ Ω :
∫

Ω
v(·)d(ti(ω))(·) ≤ x

}
are closed subsets of Ω.7

Proof of the Lemma. Since for every S ∈ S, the topology on ∆(S) coincides with

the weak∗ topology and since in particular, v : S −→ R is continuous,{
µ ∈ ∆(S) :

∫
S
v(·)dµ(·) < x

}
is open in ∆(S). Hence

{
ν ∈

⋃
S∈S ∆(S) :

∫
S
v(·)dν(·) < x

}
is open in

⋃
S∈S ∆(S).

By the continuity of ti : Ω −→
⋃
S∈S ∆(S), it follows that{

ω ∈ Ω :
∫

Ω
v(·)d(ti(ω))(·) < x

}
is open in Ω and hence its relative complement with

respect to Ω,
{
ω ∈ Ω :

∫
Ω
v(·)d(ti(ω))(·) ≥ x

}
is closed in Ω. �

Lemma 2 Let Ω be a topological unawareness belief structure. Let E be a closed subset

of Ω. Then CB1(E) is a closed subset of Ω.

Proof of the Lemma. The relative complement of E with respect to Ω, Ω \ E, is

open, and hence for every S ∈ S, (Ω \E)∩S = S \ (E ∩S) is open in S. Therefore {µ ∈
∆(S) : µ(S\(E∩S)) > 0} is open. It follows that

⋃
S∈S {µ ∈ ∆(S) : µ(S \ (E ∩ S)) > 0}

is open. Hence for every i ∈ I,
{
ω ∈ Ω : ti(ω) ∈

⋃
S∈S {µ ∈ ∆(S) : µ(S \ (E ∩ S)) > 0}

}
is open. It follows that its relative complement with respect to Ω,

B1
i (E) =

{
ω ∈ Ω : ti(ω) ∈

⋃
S∈S{µ ∈ ∆(S) : µ(E ∩ S) = 1}

}
is closed. Since an arbitrary

intersection of closed sets is closed, the Lemma follows by induction. �

Lemma 3 Let Ω be a topological unawareness belief structure. Then for every ω ∈ Ω,

every state-space S ∈ S and every player i ∈ I, the set {ω′ ∈ Ω : ti(ω
′) = ti(ω)} ∩ S is

closed in S.

7Note that we abuse notation and write
∫

Ω
v(·)d(ti(ω))(·) instead of

∫
Sti(ω)

v(·)d(ti(ω))(·).
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Proof of the Lemma. Since ∆(Sti(ω)) is the set of regular Borel probability measures

on Sti(ω) endowed with the topology of weak convergence, {ti(ω)} is closed in ∆(Sti(ω)),

and hence {ti(ω)} is closed in
⋃
S∈S ∆(S). Therefore, by continuity of ti, t

−1
i ({ti(ω)}) =

[ti(ω)] is closed in Ω. Hence, [ti(ω)] ∩ S is closed in S. �

Lemma 4 Let Ω be a topological unawareness belief structure. Let P S be a positive

(common) prior on the state-space S, and let ω ∈ S be such that ti(ω) ∈ ∆(S). Then,

for every E ∈ FS, we do have ti(ω)(E) = ti(ω)(E ∩ [ti(ω)]) = PS(E∩[ti(ω)])
PS(S∩[ti(ω)])

.

Proof. We have ti(ω)(S ∩ [ti(ω)]) = 1 and hence ti(ω)(E) = ti(ω)(E ∩ S ∩ [ti(ω)]) =

ti(ω)(E ∩ [ti(ω)]). Since P S is positive, we do have P S(S ∩ [ti(ω)]) > 0.

Since S((E ∩ [ti(ω)])↑) = S and since ω′ ∈ [ti(ω)] implies ti(ω
′) ∈ ∆(S), we do have

(E ∩ [ti(ω)])↑∩Ai((E ∩ [ti(ω)])↑) = (E ∩ [ti(ω)])↑. We also have (S ∩ [ti(ω)])↑ ⊆ Ai(S
↑) =

Ai((E ∩ [ti(ω)])↑). The last equality follows from weak necessitation. We have - by the

definition of a common prior - the following (with our abuse of notation):

P S(E ∩ [ti(ω)]) =

∫
S∩Ai((E∩[ti(ω)])↑)

ti(·)(E ∩ [ti(ω)])dP S(·)

=

∫
S∩[ti(ω)]

ti(·)(E ∩ [ti(ω)])dP S(·)

+

∫
(S∩Ai(S↑))\(S∩[ti(ω)])

ti(·)(E ∩ [ti(ω)])dP S(·)

But if ω′ ∈ (S ∩Ai((E ∩ [ti(ω)])↑)) \ (S ∩ [ti(ω)]), then ti(ω
′)(E ∩ [ti(ω)]) = 0, and hence,

we have

P S(E ∩ [ti(ω)]) =

∫
S∩[ti(ω)]

ti(·)(E ∩ [ti(ω)])dP S(·)

= ti(ω)(E ∩ [ti(ω)])

∫
S∩[ti(ω)]

1dP S(·)

= ti(ω)(E ∩ [ti(ω)])P S(S ∩ [ti(ω)]).

Since P S(S ∩ [ti(ω)]) > 0, it follows that ti(ω)(E ∩ [ti(ω)]) = PS(E∩[ti(ω)])
PS(S∩[ti(ω)])

. �
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4.2 Proof of the Theorem

Suppose by contradiction that there are x1, x2 ∈ R with x1 < x2 and a continuous random

variable v : Ω −→ R such that CB1(E≤x11 ∩ E≥x22 ) 6= ∅, where

E≤x11 :=

{
ω ∈ Ω :

∫
St1(ω)

v(·)d(t1(ω))(·) ≤ x1

}
, and

E≥x22 :=

{
ω ∈ Ω :

∫
St2(ω)

v(·)d(t2(ω))(·) ≥ x2

}
.

Let S be a �-minimal state-space with the property that S ∩CB1(E≤x11 ∩E≥x22 ) 6= ∅.

By standard properties of beliefs, we have CB1(E≤x11 ∩E≥x22 ) ⊆ B1
i (CB

1(E≤x11 ∩E≥x22 ))

for i = 1, 2. This implies that for each ω ∈ S ∩ CB1(E≤x11 ∩ E≥x22 ) and i = 1, 2, we have

ti(ω)(CB1(E≤x11 ∩ E≥x22 )) = 1, which by the minimality of S implies that ti(ω) ∈ ∆(S)

and ti(ω)(S ∩ CB1(E≤x11 ∩ E≥x22 )) = 1.

By Lemma 2, S ∩ CB1(E≤x11 ∩ E≥x22 ) is closed in S. Therefore it is easy to verify

that if flattened, F (S ∩ CB1(E≤x11 ∩ E≥x22 )), that is S ∩ CB1(E≤x11 ∩ E≥x22 ) with the

induced structure, is a standard topological type-space (as in Heifetz, 2006), since for

each ω ∈ S ∩CB1(E≤x11 ∩E≥x22 ), we have ti(ω)(S ∩CB1(E≤x11 ∩E≥x22 )) = 1 for i = 1, 2.

Since P S is a positive prior on S, we have that P S(S ∩ [ti(ω)]) > 0, for each ω ∈ S.

For ω ∈ S∩CB1(E≤x11 ∩E≥x22 ) we also have ti(ω)(S∩CB1(E≤x11 ∩E≥x22 )∩ [ti(ω)]) = 1,

and by Lemma 4, we have ti(ω)(S∩CB1(E≤x11 ∩E≥x22 )∩[ti(ω)]) =
PS(S∩CB1(E

≤x1
1 ∩E≥x22 )∩[ti(ω)])

PS(S∩[ti(ω)])
.

Hence, since P S(S∩ [ti(ω)]) > 0, it follows that P S(S∩CB1(E≤x11 ∩E≥x22 )∩ [ti(ω)]) =

P S(S ∩ [ti(ω)]) > 0. It follows that P S(S ∩CB1(E≤x11 ∩E≥x22 )) > 0. Therefore it is easy

to check that PS(·)
PS(S∩CB1(E

≤x1
1 ∩E≥x22 ))

is a common prior on F (S ∩ CB1(E≤x11 ∩ E≥x22 )).

Claim: Let ω ∈ CB1(E≤x11 ∩E≥x22 )∩S. Then
∫
S∩CB1(E

≤x1
1 ∩E≥x22 )

v(·)d(t1(ω))(·) ≤ x1

and
∫
S∩CB1(E

≤x1
1 ∩E≥x22 )

v(·)d(t2(ω))(·) ≥ x2.

We prove the second inequality, the first is analogous to the second one. We know

already that t2(ω) ∈ ∆(S). By the definitions ω ∈ S ∩ CB1(E≤x11 ∩ E≥x22 ) implies ω ∈
S∩B1

2(E≥x22 ), and therefore t2(ω)([t2(ω)]∩E≥x22 ∩S) = 1. It follows that [t2(ω)]∩E≥x22 ∩S
is non-empty. Let ω′ ∈ [t2(ω)] ∩ E≥x22 ∩ S. Then we have

∫
S
v(·)d(t2(ω′))(·) ≥ x2. But

we have t2(ω) = t2(ω′) and therefore
∫
S
v(·)d(t2(ω))(·) ≥ x2.

Since S is compact and v : S −→ R is continuous, there is a v̄ ∈ R such that |v(ω̃)| ≤ v̄

for all ω̃ ∈ S.
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Since t2(ω)(S ∩ CB1(E≤x11 ∩ E≥x22 )) = 1, we have∣∣∣∣∣
∫
S\(S∩CB1(E

≤x1
1 ∩E≥x22 ))

v(·)d(t2(ω))(·)

∣∣∣∣∣ ≤ v̄

∫
S\(S∩CB1(E

≤x1
1 ∩E≥x22 ))

1d(t2(ω))(·)

= v̄ t2(ω)(S \ (S ∩ CB1(E≤x11 ∩ E≥x22 )))

= 0.

Hence, we have∫
S∩CB1(E

≤x1
1 ∩E≥x22 )

v(·)d(t2(ω))(·) =

∫
S

v(·)d(t2(ω))(·) ≥ x2

and this finishes the proof of the claim.

It follows that we have found a standard topological type-space S∩CB1(E≤x11 ∩E≥x22 )

in the sense of Heifetz (2006) with a common prior and a continuous random variable

v : S ∩ CB1(E≤x11 ∩ E≥x22 ) −→ R such that∫
S∩CB1(E

≤x1
1 ∩E≥x22 )

v(·)d(t1(ω))(·) ≤ x1 < x2 ≤
∫
S∩CB1(E

≤x1
1 ∩E≥x22 )

v(·)d(t2(ω))(·).

Note that if we replace v(·) by v(·)− x1+x2
2

, we get∫
S∩CB1(E

≤x1
1 ∩E≥x22 )

v(·)− x1 + x2

2
d(t1(ω))(·) < 0 <

∫
S∩CB1(E

≤x1
1 ∩E≥x22 )

v(·)− x1 + x2

2
d(t2(ω))(·).

But this is a contradiction to Feinberg’s (2000) Theorem (Proposition 1 in Heifetz, 2006).

Hence this completes the proof of the theorem. �
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